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Abstract

This paper presents a new finite volume scheme designed for the approximation of a non-
linear convection-diffusion equation arising in petroleum engineering. The convection part of
the flux is written as a linear combination between an upwind scheme and a centered scheme.
The parameter of the combination is computed according to the diffusion term in order to
make the scheme stable and to reduce numerical diffusion. This scheme satisfies good math-
ematical properties and is shown to be convergent assuming that the total throughput is a
given C1-function. In practice, this scheme is easy to implement and can be used in a time
explicit or implicit form, which enables the use of large time steps during the simulations.
Keywords: Flows in porous media, Nonlinear parabolic equation, Finite volume methods.

1 Introduction

We consider a two-phase flow through a porous medium Ω, for example an oil-water flow in a
reservoir or in a sedimentary basin. Both phases are supposed to be immiscible, incompressible
with constant viscosity and composed of only one component. We denote by T the duration of
the flow. Taking into account the pressure gradient, the gravity and the capillary effects, the
generalized Darcy’s law (see Aziz and Settari [1979], Bear [1972], Peaceman [1977]) states that the
saturation u : Ω× (0, T ) → R and the pressure p : Ω× (0, T ) → R are solutions to the following
system:





φ
∂u

∂t
+ div

(
Kη1(u)

(
ρ1g∇z −∇(p+ π(u))

))
= 0,

−φ∂u
∂t

+ div
(
Kη2(u)(ρ2g∇z −∇p)

)
= 0

(1.1)

where φ stands for the porosity of the medium, K is the absolute permeability of the rock, the sub-
script 1 represents the nonwetting phase and the subscript 2 the wetting phase, u is the saturation
of the nonwetting phase, p is the pressure of the wetting phase, ρα is the density of the phase α,
α ∈ {1, 2}, g is the gravity acceleration, ηα(u) is the mobility of the phase α, π(u) is the capillary
pressure.
We assume that the boundary of the domain is impermeable, i.e.,
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



Kη2(u)
(
ρ2g∇z −∇p

)
.n = 0,

Kη1(u)
(
ρ1g∇z −∇(p+ π(u))

)
.n = 0

where n denotes the unit normal outward to ∂Ω. With such boundary conditions, the pressure
field is known up to an additive constant.
The initial values of the saturation are given by u(., 0) = uini(.).

Introducing the global pressure p̄ (see Chavent and Jaffré [1986]) defined by p̄ = p+
∫ u

0

η1
ηT

(v)π
′
(v)dv,

the system (1.1) may be reformulated (see Michel [2003]) as
{

div(Q) = 0,

φ
∂u

∂t
+ div

(
f(u,Q,G)−K∇ϕ(u)

)
= 0,

(1.2)

where Q is the total flux defined by

Q = K
((

η1(u)ρ1 + η2(u)ρ2

)
g∇z − ηT (u)∇p̄

)
, (1.3)

with f(u,Q,G) =
η1
ηT

(u)Q +
η1η2
ηT

(u)G, G = K(ρ1 − ρ2)g∇z, ϕ
′
(u) =

η1(u)η2(u)
η1(u) + η2(u)

π
′
(u).

Throughout this paper, the following hypotheses are taken for granted.

Assumptions 1.1

A1-1. In the general case we can consider Ω as an open polygonal bounded connected subset
of Rd (in practice d = 1, 2 or 3) and T as a positive given constant. But to simplify our
study, we assume that Ω is a rectangle for d = 2 or a parallelepiped for d = 3.

A1-2. φ,K ∈ L∞(Ω) with 0 < φ(x) < 1 and 0 < CK,inf ≤ K(x) ≤ CK,sup for a.e. x ∈ Ω.

A1-3. We assume that, for all α ∈ {1, 2}, ηα : R→ R+ is a Lipschitz continuous function.
We denote by Cα its Lipschitz constant. The function η1 is strictly increasing on (0, 1),
η1(u) = 0 for all u ≤ 0 and η1(u) = η1(1) for all u ≥ 1.

Conversely the function η2 is strictly decreasing on (0, 1), η2(u) = η2(0) for all u ≤ 0 and
η2(u) = 0 for all u ≥ 1.

Moreover we assume that the total mobility ηT = η1 + η2 is bounded away from 0, i.e. there
exists β > 0 such that β = infu∈R ηT (u). We denote γ = supu∈R ηT (u).

A1-4. The capillary pressure is a C1(R,R)-function which is strictly increasing on (0, 1).

A1-5. uini ∈ L∞(Ω) and 0 ≤ uini(x) ≤ 1 for a.e. x on Ω.

A1-6. For all α ∈ {1, 2} the densities ρα are constant and ρ1 < ρ2.

Remark 1: Under Assumptions A1-3 and A1-4, ϕ is a C1(R,R)-function which is Lipschitz
continuous and strictly increasing on (0, 1). We denote by Lϕ its Lipschitz constant. ¤
The existence, the uniqueness and the regularity of weak solutions to such problems have been
studied in Alt and di Benedetto [1985], Antontsev et al. [1990], Chavent and Jaffré [1986], Chen
[2001], Chen and Ewing [1999], Feng [1995], Langlo and Espedal [1992], Gagneux and Madaune-
Tort [1996], Kroener and Luckhaus [1984] under various assumptions.
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Here we are concerned with a finite volume approximation for (1.2). Without gravity we find in
Michel [2003] a cell-centered finite volume scheme for (1.2). It consists in a centered finite difference
scheme for the first equation and an upwind weighting scheme for the convection term f(u,Q, 0)
coupled with a finite difference scheme for the gradient ∇ϕ(u). This scheme satisfies estimates
in pressure and saturation and converges under the assumption that the parabolic term is not
strongly degenerate.

In this paper we study a new finite volume scheme which relies on the use of a variable Péclet
number to discretize (1.2). This scheme is designed to use the nonlinear diffusion term ϕ(u) in
order to take an approximation as centered as possible for the convection term f(u,Q,G), which
reduces numerical diffusion. Slope limiters methods (see Brenier and Jaffré [1991]) can also reduce
numerical diffusion but, in practice, they are limited to a time explicit discretization of the sat-
urations in the fluxes. Here this scheme can be used in a time explicit or implicit form. In the
latter form, the scheme is unconditionally stable and so large time steps can be used during the
simulations. An other advantage of this scheme is the simplicity of its implementation.
In this paper we only detail the implicit case but all results established in the following are satisfied
by the explicit scheme. First we recall classical pressure estimates. Then we prove the L∞-stability
of the saturation calculation (Proposition 2.2) and the existence of discrete solutions (Proposition
2.3) in pressure and saturation. The convergence of the saturation scheme is obtained assuming
that the total throughput is a given C1(Ω × (0, T ))-function (Theorem 3.1). The last part is de-
voted to numerical tests (§4) where both forms of the scheme, the implicit and the explicit forms,
are used.

2 A finite volume scheme for the coupled system

We briefly recall the definition of an admissible discretization of Ω × (0, T ) for the cell-centered
finite volume method. Complete and detailed assumptions can be found in Eymard et al. [2000].

2.1 Admissible discretization of Ω× (0, T )

Definition 2.1 (Admissible mesh of Ω) An admissible finite volume mesh of Ω, denoted by
M, is composed of a triplet (T , E ,P).

• T is a set of volumes K whose closure covers Ω̄. We denote by ∂K = K̄ \K the boundary
of a volume K and by m(K) its measure.

• E is the set of all edges, Eint the set of inner edges, Eext the set of boundary edges, EK the set of
the edges of a volume K. An edge σ such that σ̄ = ∂K∩∂L is also denoted by K|L. The set of
the neighbouring volumes of a volume K is represented by N(K) = {L ∈ T , σ = K|L ∈ EK}.
For all σ ∈ E, we denote by nK,L (resp. nσ) the unit normal of σ outward to K for σ = K|L
(resp. for σ ∈ Eext) and by m(σ) its measure.

• P refers to a family of points (xK)K∈T where ∀K ∈ T , xK ∈ K and where, for all L ∈ N(K),
the straight line going through xK and xL is orthogonal to K|L. For K ∈ T and σ ∈ EK ,
we denote by dK,σ the distance between xK and σ. If σ = K|L, we set dK|L the distance

between xK and xL and τK|L =
m(K|L)
dK|L

the transmissivity through K|L. If σ ∈ Eext, the

transmissivity τσ through σ is given by τσ =
m(σ)
dK,σ

.

We set size(T ) = sup{diam(K),K ∈ T } and regul(M) = max
K∈T ,σ∈EK

(
diam(K)
dK,σ

)
.
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In this paper, for the sake of simplicity, we restrict our study to constant time steps. But all results
stated in the following can be adjusted to variable time steps.

Definition 2.2 (Admissible discretization of Ω× (0, T )) An admissible discretization D of Ω×
(0, T ) is composed of a pair (M,M) where M is an admissible discretization of Ω and M ∈ N∗.
We denote δt = T

M and tn = nδt. We denote size(D) = max(size(M), δt).

Now let us define some notations. For a variable u we denote by un+1
K its approximation over the

volume K and the time interval (nδt, (n + 1)δt] and by u0
K the piecewise constant approximation

of the initial condition. We denote by

• X (T ) the set of piecewise constant functions over the mesh T : uT ∈ X (T ) is defined, for all
x ∈ Ω, by uT (x) = uK if x ∈ K,

• X (D) the set of piecewise constant functions over the discretization D: uD ∈ X (D) is defined
for all n ∈ {0 . . .M} and for all t ∈ (nδt, (n + 1)δt] by uD(., t) = un+1

T ∈ X (T ) and by
uD(., 0) = u0

T ∈ X (T ).

2.2 Definition of the scheme

Let D be an admissible discretization of the domain Ω× (0, T ) (see Definition 2.2). For all K ∈ T
the initial condition is approximated by

u0
K =

1
m(K)

∫

K

uini(x) dx. (2.4)

For all n ∈ {0 . . .M}, we formally integrate the equations of the system (1.2) over a volume K and
over (nδt, (n+ 1)δt):





∫ (n+1)δt

nδt

∫

∂K

Q(x, t).n(x)dζ(x)dt = 0

∫

K

φ(x)
(
u(x, tn+1)− u(x, tn)

)
dx+

∫ (n+1)δt

nδt

∫

∂K

(
f(u,Q,G)(x, t)−K(x)∇

(
ϕ(u)

)
(x, t)

)
.n(x)dζ(x)dt = 0

(2.5)

where n is the unit normal outward to ∂K. For the first equation of (2.5), taking into account the
boundary conditions and using a time explicit formulation for the saturations and a time implicit
formulation for the pressures, we have

∑

L∈N(K)

∫

K|L
Q(x, tn+ 1

2
).nK,Ldζ(x) = 0

with Q(x, tn+ 1
2
) = K(x)

((
η1(u)(x, tn)ρ1 + η2(u)(x, tn)ρ2

)
g∇z − ηT (u)(x, tn)∇p̄(x, tn+1)

)
.

Discretizing the normal gradients with a centered finite difference scheme and writing the ap-
proximation of the various terms with respect to their discrete unknowns, we obtain the pressure
scheme

∑

L∈N(K)

Qn+1
K,L = 0 (2.6)
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where

Qn+1
K,L = KK|L

((
ηn1,K|Lρ1 + ηn2,K|Lρ2

)
gδzK,L − ηnT,K|Lδp̄

n+1
K,L

)
, (2.7)

dK|L
KK|L

=
1

τK|L

(
dK,K|L
K(xK)

+
dL,K|L
K(xL)

)
,

dK|L
ηnα,K|L

=
(
dK,K|L
ηα(unK)

+
dL,K|L
ηα(unL)

)
,

gδzK,L = g∇z.−−−→xKxL, δuK,L = uL − uK .

Now let us define the saturation scheme.
For the second equation of (2.5), we use a time implicit formulation for the saturations, which
yields

∫

K

φ(x)
(
u(x, tn+1)− u(x, tn)

)
dx+ δt

∑

L∈N(K)

∫

K|L

( η1
ηT

(u)(x, tn+1)Q(x, tn+ 1
2
)+

η1η2
ηT

(u)(x, tn+1)K(x)(ρ1 − ρ2)g∇z −K(x)∇ϕ(u)(x, tn+1)
)
.nK,Ldζ(x) = 0.

Then the use of centered finite difference schemes for the discretizations of the normal gradients
give

m(K)φK
un+1
K − unK

δt
+

∑

L∈N(K)




(
η1
ηT

)n+1

K|L
Qn+1
K,L +

(
η1η2
ηT

)n+1

K|L
KK|L(ρ1 − ρ2)gδzK,L−

KK|L
(
ϕ(un+1

L )− ϕ(un+1
K )

)


 = 0

where φK =
1

m(K)

∫

K

φ(x)dx. We set GK,L = KK|L(ρ1 − ρ2)gδzK,L, GK,σ = m(σ)K(xK)(ρ1 −
ρ2)g∇z.nσ, for σ ⊂ ∂Ω. To compute the upwind terms we consider the following function.

Definition 2.3 Let F (a, b,Q,G) defined by

1. if Q ≥ 0 and G ≤ 0

F (a, b,Q,G) =





η1(a)
(
Q+Gη2(a)

)

η1(a) + η2(a)
if Q+Gη2(a) ≥ 0, (i)

η1(b)
(
Q+Gη2(a)

)

η1(b) + η2(a)
otherwise, (ii)

2. if Q ≥ 0 and G > 0

F (a, b,Q,G) =





η1(a)
(
Q+Gη2(a)

)

η1(a) + η2(a)
if Q−Gη1(a) ≥ 0, (i)

η1(a)
(
Q+Gη2(b)

)

η1(a) + η2(b)
otherwise. (ii)
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If Q < 0, we set

F (a, b,Q,G) = −F (b, a,−Q,−G).

Remark 2: Note that F is a nondecreasing Lipschitz continuous function (resp. a nonincreasing
Lipschitz continuous function) according to its first argument (resp. according to its second argu-
ment). Its Lipschitz constants are bounded by Cη(|Q|+ |G|) where Cη depends on the mobilities
ηα, α ∈ {1, 2}. For the proof of these results we refer to Enchéry et al. [2002]. ¤

Computing the transport term thanks to the function F , we obtain the saturation scheme

m(K)φK
un+1
K − unK

δt
+

∑

L∈N(K)

(
F (un+1

K , un+1
L , Qn+1

K,L , GK,L)−
KK|L(ϕ(un+1

L )− ϕ(un+1
K ))

)
= 0. (2.8)

In function F mobilities are computed according to an upwind choice. This upwind choice intro-
duces numerical diffusion which can smear out the solution. On the other hand we notice that
the capillary pressure also introduces a diffusion which can be used to stabilize the scheme. Thus,
trying to center the transport term over the edges where the gradient of ϕ is sufficient, we im-
prove the precision of the scheme while remaining stable. In practice, the transport term can be
computed as a linear combination between the centered and the upwind fluxes. This combination
is written thanks to a parameter 0 ≤ θn+1

K|L ≤ 1 depending on the variable Péclet number on this
edge. So we introduce the following function.

Definition 2.4 Let F(θ, a, b,Q,G) defined by

F(θ, a, b,Q,G) =
(
θF (a, b,Q,G) + (1− θ)F (

a+ b

2
,
a+ b

2
, Q,G)

)
(2.9)

where F (a, b,Q,G) is defined in Definition 2.3.

The saturation scheme is thus given by

m(K)φK
un+1
K − unK

δt
+

∑

L∈N(K)

( F(θn+1
K|L, u

n+1
K , un+1

L , Qn+1
K,L , GK,L)−

KK|L(ϕ(un+1
L )− ϕ(un+1

K ))

)
= 0 (2.10)

where

θn+1
K|L = max

(
0, 1− KK|L(ϕ(un+1

L )− ϕ(un+1
K ))

Λn+1
K,L(un+1

K , un+1
L )

)
(2.11)

with Λn+1
K,L(a, b) = F (a+b2 , a+b2 , Qn+1

K,L , GK,L)− F (a, b,Qn+1
K,L , GK,L).

2.3 Pressure estimates

In this section, we prove pressure estimates on (p̄n+1
K )K∈T , n∈{0...M}. We first define the discrete

H1-seminorm.

Definition 2.5 Let Ω be a domain satisfying A1-1 and M be an admissible mesh in the sense of
Definition 2.1. For u ∈ X (M), its discrete H1-seminorm is defined by

|u|1,M =
( ∑

K|L∈Eint

τK|L|δuK,L|2
) 1

2

where δuK,L = uL − uK .
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The following proposition states that the discrete H1-seminorm and the L2-norm of
(p̄n+1
K )K∈T , n∈{0...M} remain bounded. These results are obtained by using the same arguments as

in Enchéry et al. [2002].

Proposition 2.1 Under Assumptions 1.1, let D be an admissible discretization of the domain
Ω × (0, T ) in the sense of Definition 2.2. For all n ∈ {0 . . .M}, let p̄n+1

M ∈ X (M) where
(un+1
K , p̄n+1

K )K∈T ,n∈{0...M} is a solution to (2.4)-(2.6)- (2.7)-(2.9)-(2.10)-(2.11). Then there exists
a constant C1 depending only on the data and not on D nor on (un+1

K , p̄n+1
K )K∈T ,n∈{0...M}, such

that

|p̄n+1
M |1,M ≤ C1 . (2.12)

Moreover if we assume, for example, that
∫

Ω

p̄n+1
M (x)dx = 0, there exists C2 which depends on the

same parameters as C1 such that

∥∥p̄n+1
M

∥∥
L2(Ω)

≤ C2 . (2.13)

2.4 L∞ stability

We now prove the L∞ stability of the saturation calculation.

Proposition 2.2 Under Assumptions 1.1, let D be an admissible discretization of Ω × (0, T ) in
the sense of Definition 2.2 and (un+1

K , pn+1
K )K∈T ,n∈{0...M} be a solution to (2.4)-(2.6)-(2.7)- (2.9)-

(2.10) where, for all K ∈ T and L ∈ N(K), the parameter θn+1
K|L satisfies

1− KK|L(ϕ(un+1
L )− ϕ(un+1

K ))
Λn+1
K,L(un+1

K , un+1
L )

≤ θn+1
K|L ≤ 1. (2.14)

((2.11) and the upwind weighting scheme satisfy condition (2.14).)
Then we have

∀n ∈ {0 . . .M}, ∀K ∈ T , 0 ≤ unK ≤ 1. (2.15)

Proof:
For all K ∈ T , we rewrite (2.10) as

unK = un+1
K +

δt

φKm(K)

∑

L∈N(K)

fn+1
K|L (un+1

L − un+1
K ) + F (un+1

K , un+1
L , Qn+1

K,L , GK,L)

with

fn+1
K|L =

1
un+1
L − un+1

K


 (1− θn+1

K|L)
(
F (
un+1
K + un+1

L

2
,
un+1
K + un+1

L

2
, Qn+1

K,L , GK,L)−
F (un+1

K , un+1
L , Qn+1

K,L , GK,L)
)
−KK|L

(
ϕ(un+1

L )− ϕ(un+1
K )

)


 .

Let us prove (2.15) by induction on n. For n = 0, according to A1-5 and to the definition of u0
K

given by (2.4), (2.15) is satisfied. Let us assume that (2.15) is satisfied up to n. If there is some
K ∈ T such that un+1

K < 0 then we have un+1
Kmin

= minK∈T (un+1
K ) < 0. So
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unKmin
< un+1

Kmin
+

δt

φKminm(Kmin)

∑

L∈N(Kmin)

fn+1
Kmin|L(un+1

L − un+1
Kmin

)+

F (un+1
Kmin

, un+1
L , Qn+1

Kmin,L
, GKmin,L).

Moreover the function F (a, ., Qn+1
Kmin,L

, GKmin,L) is nonincreasing and fn+1
Kmin|L ≤ 0, so

unKmin
<

δt

φKminm(Kmin)

∑

L∈N(Kmin)

F (un+1
Kmin

, un+1
Kmin

, Qn+1
Kmin,L

, GKmin,L). (2.16)

According to A1-3 we have η1(u) = 0 and η2(u) = η2(0) for all u ≤ 0. Thus

F (un+1
Kmin

, un+1
Kmin

, Qn+1
Kmin,L

, GKmin,L) = 0.

Consequently (2.16) leads to unKmin
< 0, which is in contradiction with the induction hypothesis.

In the same way we prove that for all K ∈ T , un+1
K < 1. ¥

2.5 Existence of a discrete solution

We prove here that the coupled system in pressure and saturation admits at least one solution.
This result is established by using a topological degree (see Deimling [1980], Kavian [1993]).

Proposition 2.3 Under Assumptions 1.1, let D be an admissible discretization of the domain
Ω × (0, T ) in the sense of Definition 2.2. Then, for all n ∈ {0 . . .M}, there exists at least one
solution (un+1

K , p̄n+1
K )K∈T to (2.4)-(2.6)-(2.7)-(2.9)-(2.10)-(2.11).

Proof:

Let n ∈ {0 . . .M}. The existence and uniqueness (up to an additive constant) of (p̄n+1
K )K∈T can

be proved thanks to the pressure estimate (2.13) and by following the method proposed in Enchéry
et al. [2002]. Consequently it suffices to establish the existence of a solution (un+1

K )K∈T to (2.4)-
(2.9)-(2.10)-(2.11),
(Qn+1

K|L)K|L∈Eint,n∈{0...M} be given. This can be done by using a now classical argument based on
the topological degree (see Enchéry et al. [2002], Eymard et al. [2000]). The uniqueness of the
discrete solution in saturation is obtained thanks to the monotonous properties of the scheme in
L1(Ω) (see the proof of Proposition 2.2). ¥

3 Convergence of the scheme in a simplified case

In this section we prove the convergence of the saturation scheme (2.4)-(2.9)-(2.10) where the total
throughput Q is a given C1(Ω× (0, T ))-function. This result also holds for the explicit scheme.
Throughout this proof we assume that the following hypotheses are fulfilled.

Assumptions 3.1

A3-1. The total throughput Q is a given C1(Ω× (0, T ))-function and satisfies

∀(x, t) ∈ Ω× (0, T ), div(Q)(x, t) = 0,
∀(x, t) ∈ ∂Ω× (0, T ), Q(x, t).n(x) = 0.

A3-2. The porosity φ and the absolute permeability K are constant and equal to 1.
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We set Qmax = ‖Q‖L∞(Ω×(0,T )) and, for all n ∈ {0 . . .M} and for all K|L ∈ Eint, Qn+1
K,L =

1
δt

∫ (n+1)δt

nδt

∫

K|L
Q(x, t).nK,L dζ(x)dt. Let 0 < ε <

1
2
. In this section, we assume that for all n ∈

{0 . . .M} and for all K|L ∈ Eint, θn+1
K|L is given by

θn+1
K|L = max

(
0, 1− (1− 2ε)τK|L(ϕ(un+1

L − ϕ(un+1
K ))

Λn+1
K,L(un+1

K , un+1
L )

)
. (3.17)

The proof lies on the use of the Kolmogorov theorem. Thanks to this theorem we extract a
subsequence of solutions in saturation which strongly converges in L2(Ω× (0, T )). As the diffusion
term is nonlinear, we can not obtain compactness directly from the sequence (uDm

)m∈N but from
the sequence (ϕ(uDm

))m∈N. As the function ϕ is continuous and strictly increasing, the convergence
of a subsequence of (ϕ(uDm))m∈N implies the convergence of a subsequence of (uDm)m∈N.
The application of the Kolmogorov theorem require some estimates. First the L∞-stability of the
saturation calculation ensures that (ϕ(uDm

)) is bounded in L2(Ω×(0, T )). But we must also prove
that the time and the space translates of this function uniformly vanish as the translation step
tends toward 0. The last step of the proof consists in proving that the limit we obtain is solution
to a weak problem. So we have the following theorem.

Theorem 3.1 Under Assumptions 1.1 and 3.1, let us consider a sequence (Dm)m∈N of admissible
discretizations in the sense of Definition 2.2. We assume that there exists α > 0 such that for all
m ∈ N regul(Tm) ≤ α and such that size(Dm) → 0 as m → +∞. Let uDm = um ∈ X (Dm) be a
solution of the equations (2.4)-(2.9)-(2.10)-(3.17) for D = Dm. Then there exists a subsequence
of approximated solutions which we still denote by (um)m∈N such that

• (um)m∈N converges in Lq(Ω×(0, T )) for all 1 ≤ q <∞ towards a function u ∈ L∞(Ω×(0, T ))
and such that ϕ(u) ∈ L2(0, T,H1(Ω)).

• u is a solution to the weak problem: ∀ψ ∈ Ctest,
∫ T

0

∫

Ω

(uψt + f(u,Q,G).∇ψ −∇ϕ(u).∇ψ) dxdt+
∫

Ω

uiniψ(., 0)dx = 0 (3.18)

where Ctest = {ψ ∈ H1(Ω× (0, T )) / ψ(., T ) = 0}.

3.1 Space translates

To obtain an upper bound on the time and space translates of the function ϕ(uD), we must first
show that the discrete L2(0, T,H1(Ω)) semi-norm is bounded and that this bound does not depend
on the discretization. We give below the definition of this norm.

3.1.1 Discrete L2(0, T,H1(Ω))-seminorm for the function ϕ(uD)

Definition 3.1 Let Ω×(0, T ) be a domain satisfying A1-1 and D be an admissible discretization of
this domain in the sense of Definition 2.2. The L2(0, T,H1(Ω))-seminorm of a function uD ∈ X (D)
is defined by

|uD|21,D =
M∑
n=0

δt
∑

K|L∈Eint

τK|L(unL − unK)2.

For the function ϕ(uD) we have the following estimate.
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Proposition 3.1 Under Assumptions 1.1 and 3.1, let D be an admissible discretization of the
domain Ω× (0, T ) in the sense of Definition 2.2. Let uD ∈ X (D) be given by (2.4)-(2.9)- (2.10)-
(3.17). The discrete L2(0, T,H1(Ω))-seminorm of ϕ(uD) is bounded by a constant C3 depending
only on uini, Cη, Lϕ, ρ1, ρ2, g, ε, Ω, T such that

|ϕ(uD)|21,D ≤ C3 . (3.19)

Proof:
Multiplying the equation (2.10) by δtun+1

K and summing over all control volumes K ∈ T and over
all n ∈ {0 . . .M}, we end up with E1 + E2 + E3 = 0 where

E1 =
M∑
n=0

∑

K∈T
m(K)(un+1

K − unK)un+1
K

=
1
2

∑

K∈T
m(K)(uM+1

K )2 − 1
2

∑

K∈T
m(K)(u0

K)2 +
1
2

M∑
n=0

∑

K∈T
m(K)(un+1

K − unK)2

≥ 1
2

∑

K∈T
m(K)(uM+1

K )2 − 1
2
‖uini‖2L2(Ω) ,

E2 =
M∑
n=0

δt
∑

K∈T

∑

L∈N(K)




θn+1
K|LF (un+1

K , un+1
L , Qn+1

K,L , GK,L)+

(1− θn+1
K|L)F (

un+1
K + un+1

L

2
,
un+1
K + un+1

L

2
, Qn+1

K,L , GK,L)


un+1

K ,

E3 =
M∑
n=0

δt
∑

K∈T

∑

L∈N(K)

τK|L(ϕ(un+1
K )− ϕ(un+1

L ))un+1
K

=
M∑
n=0

δt
∑

K|L∈Eint

τK|L(ϕ(un+1
K )− ϕ(un+1

L ))(un+1
K − un+1

L ).

Lower bound on E2:

First we notice that the assumption A3-1 and the relation div(
−→
G) = 0 imply that

∀u ∈ [0, 1], ∀K ∈ T ,
∑

L∈N(K)

F (u, u,Qn+1
K,L , GK,L) +

∑

σ∈Eext

T EK

F (u, u, 0, GK,σ) = 0 (3.20)

where GK,σ = τσ(ρ1−ρ2)g(zσ−zK), zσ is the depth of the intersection of the line passing through
xK and orthogonal to σ. For u = un+1

K we multiply (3.20) by u. Substracting this relation to E2

and gathering with respect to the inner sides we get

E2 =
M∑
n=0

δt

[ ∑

K|L∈Eint

(
θn+1
K|L(un+1

L − un+1
K )Λn+1

K,L(un+1
K , un+1

L )+

(
F (
un+1
K + un+1

L

2
,
un+1
K + un+1

L

2
, Qn+1

K,L , GK,L)− F (un+1
K , un+1

K , Qn+1
K,L , GK,L)

)
un+1
K −

(
F (
un+1
K + un+1

L

2
,
un+1
K + un+1

L

2
, Qn+1

K,L , GK,L)− F (un+1
L , un+1

L , Qn+1
K,L , GK,L)

)
un+1
L

)
−

∑

K∈T

( ∑

σ∈Eext
T EK

F (un+1
K , un+1

K , 0, GK,σ)un+1
K

)]
.
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Now let us consider ΦnK,L(.) a primitive of the function (.)F ′(., ., Qn+1
K,L , GK,L). Integrating by part,

we have

E2 =
M∑
n=0

δt

[ ∑

K|L∈Eint

(
θn+1
K|L(un+1

L − un+1
K )Λn+1

K|L(un+1
K , un+1

L ) + Φn+1
K,L(un+1

L )− Φn+1
K,L(un+1

K )+

∫ un+1
L

un+1
K

(
F (s, s,Qn+1

K,L , GK,L)− F (
un+1
K + un+1

L

2
,
un+1
K + un+1

L

2
, Qn+1

K,L , GK,L)
)
ds

)
−

∑

K∈T

( ∑

σ∈Eext
T EK

F (un+1
K , un+1

K , 0, GK,σ)un+1
K

)]
.

Then we use the following lemma to get a lower bound on the right hand side. Its proof is given
in Eymard et al. [2000] pp. 105.

Lemma 3.1 Let g : R × R → R a Lipschitz continuous function which is nondecreasing with
respect to its first argument and nonincreasing with respect to its second argument. We denote
respectively by G1 and G2 its Lipschitz constants with respect to its first and second arguments.
Then for all a, b belonging to R we have

∫ b

a

(
g(s, s)− g(a, b)

)
ds ≥ 1

2(G1 +G2)

(
(g(b, b)− g(a, b))2 + (g(a, a)− g(a, b))2

)
.

Substituting the function g(., .) by F (., ., Qn+1
K,L , GK,L), we obtain

E2 ≥
M∑
n=0

δt

[ ∑

K|L∈Eint

(
(θn+1
K|L − 1)(un+1

L − un+1
K )Λn+1

K|L(un+1
K , un+1

L )+

(
Φn+1
K,L(un+1

L )− Φn+1
K,L(un+1

K )
)

+
1

4Cη(|Qn+1
K,L |+ |GK,L|)

×
((

F (un+1
K , un+1

K , Qn+1
K,L , GK,L)− F (un+1

K , un+1
L , Qn+1

K,L , GK,L)
)2

+

(
F (un+1

L , un+1
L , Qn+1

K,L , GK,L)− F (un+1
K , un+1

L , Qn+1
K,L , GK,L)

)2
))

−
∑

K∈T

( ∑

σ∈Eext

T EK

F (un+1
K , un+1

K , 0, GK,σ)unK

)]
.

But, using again (3.20), we notice that, for all n ∈ {0 . . .M} and for all K ∈ T ,

∑

L∈N(K)

ΦnK,L(un+1
K ) =

∑

L∈N(K)

(
un+1
K F (un+1

K , un+1
K , Qn+1

K,L , GK,L)−
∫ un+1

K

0

F (s, s,Qn+1
K,L , GK,L) ds

)
= −

∑

σ∈Eext

T EK

(
un+1
K F (un+1

K , un+1
K , 0, GK,σ)−

∫ un+1
K

0

F (s, s, 0, GK,σ) ds
)
.

Therefore
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E2 ≥
M∑
n=0

δt

[ ∑

K|L∈Eint

(
(θn+1
K|L − 1)(un+1

L − un+1
K )Λn+1

K|L(un+1
K , un+1

L )+

1
4Cη(|Qn+1

K,L |+ |GK,L|)

((
F (un+1

K , un+1
K , Qn+1

K,L , GK,L)− F (un+1
K , un+1

L , Qn+1
K,L , GK,L)

)2

+

(
F (un+1

L , un+1
L , Qn+1

K,L , GK,L)− F (un+1
K , un+1

L , Qn+1
K,L , GK,L)

)2
))

−
∑

K∈T

( ∑

σ∈Eext
T EK

∫ un+1
K

0

F (s, s, 0, GK,σ)

)]
.

Moreover we notice that

sign
(
Λn+1
K,L(un+1

K , un+1
L )

)
= sign

(
ϕ(un+1

K )− ϕ(un+1
L )

)
(3.21)

and that (3.17) yields

(1− θn+1
K|L)

∣∣∣Λn+1
K,L(un+1

K , un+1
L )

∣∣∣ ≤ (1− ε)τK|L
∣∣∣ϕ(un+1

K )− ϕ(un+1
L )

∣∣∣. (3.22)

So, collecting the previous lower and upper bounds, using (3.21), (3.22), and noticeing that ϕ is
Lipschitz continuous we end up with

ε

M∑
n=0

δt

[ ∑

K|L∈Eint

(
1

4Cη(|Qn+1
K,L |+ |GK,L|)

×
((

F (un+1
K , un+1

K , Qn+1
K,L , GK,L)− F (un+1

K , un+1
L , Qn+1

K,L , GK,L)
)2

+
(
F (un+1

L , un+1
L , Qn+1

K,L , GK,L)− F (un+1
K , un+1

L , Qn+1
K,L , GK,L)

)2
)

+

τK|L
Lϕ

(
ϕ(un+1

L )− ϕ(un+1
K )

)2
)
−

∑

K∈T

( ∑

σ∈Eext
T EK

∫ un+1
K

0

F (s, s, 0, GK,σ)ds

)]

≤ 1
2
||uini||2L2(Ω).

Thus

ε

Lϕ
|ϕ(uD)|21,D −

∣∣∣∣∣
M∑
n=0

δt
∑

K∈T

∑

σ∈Eext
T EK

∫ un+1
K

0

F (s, s, 0, GK,σ)ds

∣∣∣∣∣ ≤
1
2
||uini||2L2(Ω).

The term with the integral in the left hand side can be bounded in the following way
∣∣∣∣∣
M∑
n=0

δt
∑

K∈T

∑

σ∈Eext
T EK

∫ un+1
K

0

F (s, s, 0, GK,σ)ds

∣∣∣∣∣ ≤ 2TCη(ρ2 − ρ1)gm(∂Ω).

So it leads to

ε

Lϕ
|ϕ(uD)|21,D ≤

1
2
||uini||2L2(Ω) + 2TCη(ρ2 − ρ1)gm(∂Ω),

which gives the result taking C3 = Lϕ

ε

(
1
2 ‖uini‖2L2(Ω) + 2TCη(ρ2 − ρ1)gm(∂Ω)

)
. ¥
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3.1.2 Upper bound of the space translates of the function ϕ(uD)

We conclude this section dedicated to the space translates with the following proposition proved
in Eymard et al. [2000] pp. 74–75.

Proposition 3.2 Under Assumptions 1.1 and 3.1, let D be an admissible discretization of the
domain Ω × (0, T ) in the sense of Definition 2.2. Let uD ∈ X (D) be given by (2.4)-(2.9)-(2.10)-
(3.17). Let ξ ∈ Rd and Ωξ be a subset of Ω defined by Ωξ = {x ∈ Ω / [x, x+ ξ] ⊂ Ω}. Then there
exists a constant C4 depending only on the number of edges of Ω such that the function ϕ(uD)
satisfies

∫ T

0

∫

Ωξ

|ϕ(uD(x+ ξ, t)− ϕ(uD(x, t)|2dxdt ≤ |ξ|
(
|ξ|+ C4 size(T )

)
|ϕ(u)|21,D. (3.23)

Moreover if we set uD = 0 for all (x, t) /∈ Ω× (0, T ) then, for all ξ ∈ Rd, we have

||ϕ(uD(.+ ξ, .))− ϕ(uD(., .))||2L2(Rd+1) ≤ C5 |ξ|
(
|ξ|+ size(M) + 1

)
(3.24)

where C5 depends on the constants C3 , C4 , T , Lϕ and on the domain Ω.

3.2 Time translates

We now prove that the time translates of the function ϕ(uD) remain bounded.

Proposition 3.3 Under Assumptions 1.1 and 3.1 let D be an admissible discretization in the sense
of Definition 2.2. Let uD ∈ X (D) be the solution of equations (2.4)-(2.9)-(2.10)-(3.17). Outside
the domain Ω× (0, T ), we set uD = 0. Then, for all τ ∈ R, the following inequality holds

||ϕ(uD(x, t+ τ)− ϕ(uD(x, t)||2L2(Rd+1) ≤ C6 |τ | (3.25)

where C6 depends on Lϕ, Cη, C3 , d, Ω, T , Qmax, ρα, α ∈ {1, 2} and g.

Proof:
We obtain the result by using the estimate (3.19) and by following the method presented in Eymard
et al. [2000] pp. 106–108. ¥

3.3 Proof of the convergence Theorem 3.1

Convergence of a subsequence of (um)m∈N:

We set ũm = um on Ω× (0, T ) and we extend this function to 0 on Rd+1 \ (Ω× (0, T )). Since the
function ϕ is continuous and since ũm ∈ [0, 1] on Rd+1 for all m ∈ {0 . . .M}, the sequence ϕ(ũm)
is bounded in Lq(Rd+1) for all 1 ≤ q ≤ +∞. From inequalities (3.24) and (3.25), we deduce that,
for all ξ ∈ Rd and τ ∈ R, there exists a constant C(ξ, τ) → 0 as ξ → 0 and τ → 0 such that

‖ϕ(ũm(x+ ξ, t+ τ))− ϕ(ũm(x, t))‖2Lq(Rd+1) ≤ C(ξ, τ)

for all 1 ≤ q < ∞. Under these conditions, we can apply the Kolmogorov theorem (see Eymard
et al. [2000]) and deduce that the sequence (ϕ(um))m∈N is relatively compact in Lq(Ω × (0, T )).
So there exists a subsequence, still denoted by (ϕ(um))m∈N which converges in Lq(Ω× (0, T )). As
ϕ is a strictly increasing C1-function, we also deduce the convergence of the sequence (um) toward
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a function u ∈ Lq(Ω× (0, T )) ∩ L∞(Ω× (0, T )).

ϕ(u) ∈ L2(0, T,H1(Ω)): see Eymard et al. [2000] pp. 91.

Convergence of um toward a weak solution of (3.18):

Let us consider the set C̃test = {ψ ∈ C2(Ω × [0, T ]) / ψ(., T ) = 0} which is dense in Ctest.
Let ψ ∈ C̃test and (um)m∈N be the sequence of solutions to (2.4)-(2.9)-(2.10)- (3.17). For all
n ∈ {0 . . .M} and K ∈ T , we multiply (2.10) by ψnK = ψ(xK , nδt) and we sum these equalities
over all the volumes:

M∑
n=0

∑

K∈T
m(K)(un+1

K − unK)ψnK+

δt
∑

L∈N(K)

(
F(θn+1

K|L, u
n+1
K , un+1

L , Qn+1
K,L , GK,L)− τK|L(ϕ(un+1

L )− ϕ(un+1
K ))

)
ψnK =

E1,m + E2,m + E3,m = 0

where

E1,m =
M∑
n=0

∑

K∈T
m(K)(un+1

K − unK)ψnK ,

E2,m =
M∑
n=0

δt
∑

K∈T

∑

L∈N(K)

(
F(θn+1

K|L, u
n+1
K , un+1

L , Qn+1
K,L , GK,L)

)
ψnK ,

E3,m = −
M∑
n=0

δt
∑

K∈T

∑

L∈N(K)

τK|L
(
ϕ(un+1

L )− ϕ(un+1
K )

)
ψnK .

Convergence of E1,m: Following Eymard et al. [2000] pp. 110, we get

lim
m→+∞

E1,m =
∫ T

0

∫

Ω

u(x, t)ψt(x, t) dxdt−
∫

Ω

uini(x)ψ(x, 0) dx.

Convergence of E2,m:

Let F2,m =
∫ T

0

∫

Ω

f(um,Q,G).∇ψdxdt.
According to A3-1 we have





div(Q) = 0 on Ω× (0, T ),
Q.n = 0 on ∂Ω× (0, T ),
div(G) = 0.

(3.26)

Using these properties, the term F2,m can be rewritten under the form

F2,m =
M∑
n=0

δt

( ∑

K∈T

( ∑

L∈N(K)

m(K|L)f(un+1
K , ˜(ψQ)

n+1

K,L ,
˜(ψG)

n+1

K,L)+

∑

σ∈EK

T Eext

m(σ)f(un+1
K , 0, ˜(ψG)

n+1

σ )
))

where
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˜(ψu)
n

σ =
1

δtm(σ)

∫ (n+1)δt

nδt

∫

σ

ψu(x, t).nσ dζ(x)dt.

Now let us consider the terme F̃i,2,m given by

F̃2,m =
M∑
n=0

δt

( ∑

K∈T

( ∑

L∈N(K)

m(K|L)f(un+1
K ,

Qn+1
K,L

m(K|L)
,
GK,L
m(K|L)

)ψn+1
K|L+

∑

σ∈EK

T Eext

m(σ)f(un+1
K , 0,

GK,σ
m(σ)

)ψn+1
σ

))

with

ψn+1
σ =

1
δtm(σ)

∫ (n+1)δt

nδt

∫

σ

ψ(x, t)dζ(x)dt.

In a first time, we prove that the difference |F2,m − F̃2,m| vanishes as m→ +∞.
Gathering the terms according to the inner sides, the difference dF2,m between F̃2,m and F2,m is
such that dF2,m = dF2,m,int + dF2,m,ext with

dF2,m,int =
M∑
n=0

δt

( ∑

K|L∈Eint

m(K|L)×
(
f
(
un+1
K ,

Qn+1
K,L

m(K|L)
ψn+1
K|L −

˜
(ψ
−→
Q)

n+1

K,L ,
GK,L
m(K|L)

ψn+1
K|L −

˜
(ψ
−→
G)

n+1

K,L

)
−

f
(
un+1
L ,

Qn+1
K,L

m(K|L)
ψn+1
K|L −

˜
(ψ
−→
Q)

n+1

K,L ,
GK,L
m(K|L)

ψn+1
K|L −

˜
(ψ
−→
G)

n+1

K,L

)))
,

dF2,m,ext =
M∑
n=0

δt
∑

K∈T

( ∑

σ∈EK

T Eext

m(σ)×
(
f
(
un+1
K , 0,

Gσ
m(σ)

ψn+1
σ − ˜

(ψ
−→
G)

n+1

σ

)))
.

We then have

|dF2,m,int| ≤
M∑
n=0

δt

( ∑

K|L∈Eint

m(K|L)|un+1
L − un+1

K |×

2Cη

(∣∣∣
Qn+1
K,L

m(K|L)
ψn+1
K|L −

˜
(ψ
−→
Q)

n+1

K,L

∣∣∣ +
∣∣∣ GK,L
m(K|L)

ψn+1
K|L −

˜
(ψ
−→
G)

n+1

K,L

∣∣∣
))

.

As functions ψ and
−→
Q are smooth, there is a constant C7 such that

|dF2,m,int| ≤ C7

M∑
n=0

δt
∑

K∈T

∑

L∈N(K)

m(K|L)diam(K)|un+1
L − un+1

K |.

We then use the following Lemma.

15



Lemma 3.2 Under Assumptions 1.1 and 3.1, let (Dm)m∈N be a sequence of admissible discretiza-
tions of the domain Ω× (0, T ) in the sense of Definition 2.2 such that size(Dm) → 0 as m→ +∞
and such that there exists α > 0 satisfying regul(Mm) ≤ dα. Let um ∈ X (Dm) be given by
equations (2.4)-(2.9)-(2.10)- (3.17). So we have

M∑
n=0

δt
∑

K∈T

∑

L∈N(K)

m(K|L)diam(K)|un+1
L − un+1

K | → 0 as m → +∞. (3.27)

Proof:
This lemma may be easily deduced from the convergence of um ∈ X (Dm) toward u in L1(Ω×(0, T ))
and from the density of the space C∞(Ω̄× (0, T )) in L1(Ω× (0, T )). ¥
This result ensures that |dF2,m,int| → 0 as m → +∞. For the term dF2,m,ext we have thanks to
the regularity of ψ and Q and thanks to the L∞-stability of the scheme

|dF2,m,ext| ≤ C8 size(M).

Consequently |F2,m − F̃2,m| → 0 as m → +∞. On the other hand, as Q and G are bounded in
L∞(Ω× (0, T )), f(.,Q,G) is Lipschitz continuous. Moreover, as um → u in L1(Ω× (0, T )) we have

F2,m →
∫ T

0

∫

Ω

f(u,Q,G).∇ψdxdt as m→ +∞.

Using again the relations (3.26), we rewrite F̃2,m as

F̃2,m =
M∑
n=0

δt

( ∑

K∈T

( ∑

L∈N(K)

f(un+1
K , Qn+1

K,L , GK,L)(ψn+1
K|L − ψnK)+

∑

σ∈EK

T Eext

f(un+1
K , 0, GK,σ)(ψn+1

σ − ψnK)
))

.

But we notice that
∑

K∈T

∑

L∈N(K)

F (un+1
K , un+1

L , Qn+1
K,L , GK,L)ψn+1

K|L = 0.

So E2,m can be put under the form

E2,m =
M∑
n=0

δt
∑

K∈T

∑

L∈N(K)

(
F (un+1

K , un+1
L , Qn+1

K,L , GK,L)
)(
ψnK − ψn+1

K|L
)
.

We then have

|E2,m + F̃2,m| ≤
M∑
n=0

δt

( ∑

K∈T

∑

L∈N(K)

Cη(|Qn+1
K,L |+ |GK,L|)|un+1

L − un+1
K ||ψnK − ψn+1

K|L |+
∑

K∈T

∑

σ∈EK

T Eext

|f(unK , 0, GK,σ)||ψn+1
σ − ψnK |

)
.

So there is a constant Cψ such that

16



|E2,m + F̃2,m| ≤
M∑
n=0

δt

( ∑

K∈T

∑

L∈N(K)

Cη

(
Qmax + (ρ2 − ρ1)g

)
m(K|L)|un+1

L − un+1
K |×

Cψdiam(K) +
∑

K∈T

∑

σ∈EK

T Eext

2Cη(ρ2 − ρ1)gm(σ)Cψdiam(K)
)
.

Moreover

M∑
n=0

δt
∑

K∈T

∑

σ∈EK

T Eext

Cη(ρ2 − ρ1)gm(σ)Cψdiam(K) ≤ Tm(∂Ω)Cη(ρ2 − ρ1)gCψsize(M).

Thus finally we have

lim
m→∞

E2,m = −
∫ T

0

∫

Ω

f(u,Q,G).∇ψdxdt.

Convergence of E3,m: By applying the method presented in Eymard and Gallouët [2003] we get

lim
m→∞

E3,m =
∫ T

0

∫

Ω

∇ϕ(u)(x, t).∇ψ(x, t) dxdt.

4 Numerical tests

4.1 Numerical data

In this section we detail the numerical data used in the two following tests. The tests have been
achieved thanks to a prototype designed for sedimentary basin simulations. Consequently the
dimensions of the domain are given in meter and the time is counted in millions of years.

Gravity: g = 9.81m.s−2

Properties of the fluids:

Type of data Oil Water
µα 5.10−3 Pa.s 10−3 Pa.s
ρα 800 kg.m−3 1100 kg.m−3

krα(u)





0 if u ≤ 0,
u if 0 ≤ u ≤ 1,
1 otherwise.





1 if u ≤ 0
1− u if 0 ≤ u ≤ 1

0 otherwise.

ηα
kr1(u)
µ1

kr2(u)
µ2

π(u) ∀ 0 ≤ u ≤ 1, 0.3u

Properties of the rock:

• φ = 0.1

• K = 50µD (1 µD = 0.98.10−15 m2)
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4.2 Test 1

For a 1-D case, we compare the evolution of the saturation over the time for different schemes.
Among these schemes, we have both implicit and explicit variable Péclet number schemes, their
upwind equivalents where for all K|L ∈ Eint θn+1

K|L = 1 and a MUSCL scheme.
Let Ω = (0, 3000) and D = (2600, 3000). The initial condition uini is given by

uini(x) =
{

1.0 if x ∈ D
0.0 otherwise.

Since the boundary is impermeable, the total throughput is equal to 0 on Ω× (0, T ). The domain
is meshed by a cartesian regular grid, M. We denote by h = ∆z the space step and N = card(T ).
The MUSCL scheme we use to discretize (1.2) is defined, in the general case and for all i ∈ {1 . . . N},
by

∆zφ
un+1
i − uni

δt
+ Fn+1

i+ 1
2
− Fn+1

i− 1
2

+Kϕ(un+1
i+1 )− ϕ(un+1

i )
∆z

−Kϕ(un+1
i )− ϕ(un+1

i−1 )
∆z

= 0

where

•

Fn+1
i+ 1

2
=





η̃n+1
o,i+ 1

2

(
Qn+1
i+ 1

2
+Gη̃n+1

w,i+ 1
2

)

η̃n+1
o,i+ 1

2
+ η̃n+1

w,i+ 1
2

for all i ∈ {1 . . . N − 1},

0 for i = 0 or i = N,

• G = K(ρ1 − ρ2)g and Qn+1
i+ 1

2
is given by (2.6)-(2.7),

• if Qn+1
i+ 1

2
< 0

η̃n+1
1,i+ 1

2
= η̃n+1,+

1,i+ 1
2
,

η̃n+1
2,i+ 1

2
=

{
η̃n+1,−
2,i+ 1

2
if Qn+1

i+ 1
2
−Gη̃n+1

o,i+ 1
2
≥ 0,

η̃n+1,+

2,i+ 1
2

otherwise,

if Qn+1
i+ 1

2
≥ 0

η̃n+1
2,i+ 1

2
= η̃n+1,−

2,i+ 1
2
,

η̃n+1
1,i+ 1

2
=

{
η̃n+1,−
1,i+ 1

2
if Qn+1

i+ 1
2

+Gη̃n+1
w,i+ 1

2
≥ 0,

η̃n+1,+

1,i+ 1
2

otherwise,

• for all α ∈ {1, 2}

η̃n+1,+

α,i+ 1
2

= ηα(uni+1)− d(zi+ 1
2
, zi+1)δηnα,i+1,

η̃n+1,−
α,i+ 1

2
= ηα(uni ) + d(zi, zi+ 1

2
)δηnα,i,

•

δηnα,i =





sign( ˆδηnα,i)min
(
| ˆδηnα,i|,

|ηα(uni+1)− ηα(uni )|
d(zi, zi+1)

,
|ηα(uni )− ηα(uni−1)|

d(zi−1, zi)

)

if these three values have the same sign,
0 otherwise,
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•
ˆδηnα,i =

|ηα(uni+1)− ηα(uni−1)|
d(zi−1, zi+1)

.

For h = 50m, Figure 1 shows the rise of oil under gravity along the column Ω at t = 0.5. On
this figure, we put the saturations computed by the explicit variable Péclet number scheme, the
implicit variable Péclet number scheme, the explicit upwind scheme (i.e. θK|L = 1, ∀K|L ∈ Eint),
the implicit upwind scheme and the explicit upwind scheme with slope limiters which we have
previously detailed. With this first test, we notice that the precision reached by the variable Péclet
number scheme is close to the precision of the MUSCL scheme. The implicit form of this scheme
seems to be more diffusive but its solution remains better than the upwind schemes and it needs
not so many time steps to compute the solution as all other explicit schemes.

25 1000 2000 2975
0

1

Depth

Sa
tu

ra
ti

on

Theta

Implicit Theta

Upwind

Implicit Upwind

Slope Limiter

25 1000 2000 2975
0

1

Figure 1: Saturations computed with different schemes at t = 0.5.

4.3 Test 2

In this test we determine the numerical convergence rate of the explicit variable Péclet number
scheme. We use the same data as the previous test apart from the domain which is smaller and
defined by Ω = (−500, 0) and D = (−500,−100). To evaluate the convergence speed, we have
computed a reference solution at t = 0.1 for a space step equal to h = 0.5m. Figure 2 shows the
error we obtain for different space steps. The convergence rate is here equal to 1.1342. This result
confirms again the better precision of the scheme in comparison with the upwind schemes whose
convergence rate does not exceed 1.0.
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Figure 2: Numerical convergence in saturation
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