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Abstract. We consider a simplified model of a two-phase flow through a heterogeneous porous
medium. Focusing on the capillary forces motion, a nonlinear degenerate parabolic problem is
approximated in a domain shared in two homogeneous parts, each of them being characterized by
its relative permeability and capillary curves functions of the phase saturations. We first give a
weak form of the conservation equations on the whole domain, with a new general expression of the
conditions at the interface between the two regions. We then propose a finite volume scheme for
the approximation of the solution, which is shown to converge to a weak solution in 1D, 2D or 3D
domains. We conclude with presenting some numerical tests.
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1. Introduction. Simulations of two-phase flows through heterogeneous porous
media are widely used in petroleum engineering. For example, for exploration pur-
poses, the basin modeling aims to reconstruct the geological history of a sedimentary
basin and in particular the migration of hydrocarbon components at geological time
scale. The reservoir simulation is devoted to the understanding and the prediction of
fluid flows occurring during production processes.
One of the most important consequences of the presence of heterogeneities in a porous
medium is the phenomenon of capillary entrapment. This phenomenon occurs at the
interface between two geological layers where discontinuous capillary thresholds ap-
pear. Indeed if the mean pore radius in one layer is smaller than in the other, the oil
phase must reach an access pressure so that the oil phase can enter the least permeable
layer. In a sedimentary basin, this mechanism can induce the formation of oilfields.
On the other hand, in reservoir engineering, the capillary trapping can reduce the
recovery factor since large quantities of oil can remain trapped. Therefore, for this
kind of applications, one need a precise understanding of this phenomenon on the
physical plane as on the mathematical plane as well.
The physical principles which govern these flows and the mathematical models can
be found in [2], [3], [4], [7]. However, the phenomenon of capillary trapping and its
mathematical modelization have only been completed in some simplified cases [5], [9],
[14].
The aim of this paper is to propose a general model for this phenomenon, and to
give the mathematical study of the convergence of a scheme which can be used in the
industrial context.

We thus consider an incompressible and immiscible oil-water flow through a 1D, 2D
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or 3D heterogeneous and isotropic porous medium Ω. Using Darcy’s law, the conser-
vation of oil and water phases is given, for all (x, t) ∈ Ω × (0, T ), by



















−φ(x)
∂u(x, t)

∂t
− div

(

µw(x, u(x, t))(∇pw(x, t) − ρwg)
)

= 0,

φ(x)
∂u(x, t)

∂t
− div

(

µo(x, u(x, t))(∇po(x, t) − ρog)
)

= 0,

po(x, t) − pw(x, t) = π(x, u(x, t))

(1.1)

where the function φ is the porosity of the medium, u ∈ [0, 1] is the oil saturation
(and therefore 1−u is the water saturation), π(x, u) is the capillary pressure, g is the
gravity acceleration. The indices o and w respectively stand for the oil and the water
phase. Thus, for β = o, w, pβ is the pressure of the phase β, µβ(x, u) is the mobility
of the phase β and ρβ is the density of the phase β. The unknowns of the problem
are the functions u, pw and po.
Focusing on the modeling of flow at the interface between two different porous mate-
rials, we make the following assumptions.

Assumptions 1.1.
H1-1. The domain Ω is such that Ω = Ω1

⋃

Ω2. The subdomains Ω1 and Ω2 are
disjoint open segments (if d = 1), polygonal (if d = 2) or polyhedral (if d = 3)
bounded connected subsets of R

d. We assume that the common boundary
between Ω1 and Ω2, Γ = ∂Ω1

⋂

∂Ω2, has a strictly positive and finite d − 1-
measure. The real T > 0 is the length of the considered time period.

H1-2. The function φ takes the strictly positive constant value 0 < φi < 1 in Ωi, for
i = 1, 2.

H1-3. For β ∈ {o, w}, i = 1, 2 and for all x ∈ Ωi µβ(x, .) = µβ,i. µo,i is a strictly
increasing continuous function satisfying µo,i(u) = µo,i(0) = 0 for all u ≤ 0
and µo,i(u) = µo,i(1) for all u ≥ 1. µw,i is a strictly decreasing continuous
function satisfying µw,i(u) = µw,i(1) = 0 for all u ≥ 1 and µw,i(u) = µw,i(0)
for all u ≤ 0.

H1-4. For all x ∈ Ωi, π(x, .) = πi ∈ C0(R,R) and πi is such that its restric-
tion πi|[0,1] to [0, 1] is strictly increasing, belongs to C1([0, 1],R) and satisfies
πi(u) = πi(0) for all u ≤ 0 and πi(u) = πi(1) for all u ≥ 1. We assume that
π1(0) ≤ π2(0) ≤ π1(1) ≤ π2(1). We denote by u?1 the unique real in [0, 1]
satisfying π1(u

?
1) = π2(0). Thus, for all u ∈ [0, u?1), we have π1(u) < π2(u).

We denote by u?2 the unique real in [0, 1] satisfying π2(u
?
2) = π1(1). Thus, for

all u ∈ (u?2, 1], we have π1(u) < π2(u). (See Figure 1.1.)
H1-5. The initial condition in saturation uini ∈ L∞(Ω) and 0 ≤ uini(x) ≤ 1, for a.e.

x ∈ Ω.

The following conditions must be satisfied on the traces of ui, pβ,i and ∇pβ,i on
Γ × (0, T ), respectively denoted by ui,Γ, pβ,i,Γ and (∇p)β,i,Γ (see [3]):

1. for any β = o, w, the flux of the phase β must be continuous:

µβ,1(u1,Γ)((∇p)β,1,Γ − ρβg).−→n 1,Γ = −µβ,2(u2,Γ)((∇p)β,2,Γ − ρβg).−→n 2,Γ(1.2)

where −→n i,Γ is the unit normal of Γ outward to Ωi,
2. for any β = o, w, either (pβ is continuous) or (pβ is discontinuous and µβ = 0);

since the saturation is itself discontinuous across Γ, one must express the
mobility at the upstream side of the interface. This gives

µβ,1(u1,Γ)(pβ,1,Γ − pβ,2,Γ)+ − µβ,2(u2,Γ)(pβ,2,Γ − pβ,1,Γ)+ = 0(1.3)
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along with po,i,Γ − pw,i,Γ = πi(ui,Γ), for i = 1, 2, where we denote, for all
a ∈ R, a+ = max(a, 0).

The relations (1.3) can be directly expressed in terms of relations between ui,Γ and
pβ,i,Γ, β = o, w, i = 1, 2:

1. If 0 ≤ u1,Γ < u?1, then µw,1(u1,Γ) > 0; this implies pw,1,Γ ≤ pw,2,Γ. Since
π1(u1,Γ) < π2(0) ≤ π2(u2,Γ), we get po,1,Γ < po,2,Γ, which in turn implies
µo,2(u2,Γ) = 0, and thus u2,Γ = 0. Therefore µw,2(u2,Γ) > 0, and pw,2,Γ ≤
pw,1,Γ. Thus pw,2,Γ = pw,1,Γ. In this case, the oil phase is trapped in Ω1, and
the water flows across Γ.

2. If u?1 ≤ u1,Γ and u2,Γ ≤ u?2, then π2(0) ≤ π1(u1,Γ), and π2(u2,Γ) ≤ π1(1).
Since µo,1(u1,Γ) > 0, then po,1,Γ ≤ po,2,Γ and µo,2(u2,Γ) = 0 or po,1,Γ = po,2,Γ.
Similarly, since µw,2(u2,Γ) > 0, then pw,1,Γ ≥ pw,2,Γ and µw,1(u1,Γ) = 0 or
pw,1,Γ = pw,2,Γ. Therefore, we get po,1,Γ−pw,1,Γ ≤ po,2,Γ−pw,2,Γ, which gives
π1(u1,Γ) ≤ π2(u2,Γ). If we consider the case µo,2(u2,Γ) = 0, we get u2,Γ = 0
and thus π2(0) = π1(u1,Γ). Similarly, if we consider the case µw,1(u1,Γ) =
0, we get π2(u2,Γ) = π1(1). If we have at the same time µo,2(u2,Γ) > 0
and µw,1(u1,Γ) > 0, then po,1,Γ = po,2,Γ and pw,1,Γ = pw,2,Γ, which implies
π1(u1,Γ) = π2(u2,Γ). Therefore, in all cases, we get π1(u1,Γ) = π2(u2,Γ), and
consequently po,1,Γ = po,2,Γ and pw,1,Γ = pw,2,Γ. In this case, both phases
flow across Γ.

3. If u?2 < u2,Γ ≤ 1, a similar discussion yields u1,Γ = 1 and po,1,Γ = po,2,Γ. In
this case, the water phase is trapped in Ω1, and the oil flows across Γ.

A consequence of this discussion is that, in all cases, the resulting condition on the oil
saturations at the boundary Γ is given by π̂1(u1,Γ) = π̂2(u2,Γ), defining the functions
π̂1 and π̂2 by π̂1 : u 7→ max(π1(u), π2(0)) and π̂2 : u 7→ min(π2(u), π1(1)).
Now let us introduce the global pressure

p̃i(x, t) = pw,i(x, t) +

∫ ui(x,t)

0

µo,i(a)

µo,i(a) + µw,i(a)
π′
i(a)da (first introduced by Chavent,

see for example [7]) and the functions ηi : u 7→ µo,i(u)µw,i(u)

µo,i(u) + µw,i(u)
and ϕi : u 7→

∫ u

0

ηi(a)π
′
i(a)da. We denote by Lϕi

the Lipschitz constant of ϕi and by Cη an upper

bound of ηi(u), u ∈ R, i = 1 and 2. Using these notations we have for (x, t) ∈
Ωi × (0, T ), i = 1, 2,



















φi
∂ui(x, t)

∂t
− div

(

µo,i(ui(x, t))(∇p̃i(x, t) − ρog)
)

− ∆ϕi(ui(x, t)) = 0,

−div





∑

β=o,w

µβ,i(ui(x, t))∇p̃i(x, t) −
∑

β=o,w

µβ,i(ui(x, t))ρβg



 = 0.
(1.4)

We neglect in the first equation of (1.4) the term div [µo,i(ui(x, t))(∇p̃i(x, t) − ρog)] in
front of ∆ϕi(ui(x, t)), since this is sufficient to get the mathematical properties which
are involved in the oil trapping phenomenon, as shown in the numerical examples
at the end of this paper. Equations (1.2), (1.3) and (1.4) then produce within this
simplified case the following equations, the solution of which are the functions ui(x, t),
(x, t) ∈ Ωi × (0, T ):

φi
∂ui
∂t

− ∆ϕi(ui) = 0, in Ωi × (0, T ), for all i ∈ {1, 2},(1.5)
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∇ϕ1(u1,Γ).−→n 1,Γ = −∇ϕ2(u2,Γ).−→n 2,Γ, on Γ × (0, T )(1.6)

and

π̂1(u1,Γ) = π̂2(u2,Γ),(1.7)

which summarizes the discussion induced by (1.3). Considering the problem of the
migration of oil, we prescribe a homogeneous Neumann condition, which is expressed
by

η(., u)∇π(., u).−→n = 0, on ∂Ω × (0, T ).(1.8)

For t = 0, we have

u(x, 0) = uini, in Ω.(1.9)

Before giving the weak formulation of the problem we prove the following Lemma.
Lemma 1.2. Under Assumptions 1.1, let Ψ : [π2(0), π1(1)] → R be the strictly

increasing function defined by p 7→ Ψ(p) =
∫ p

π2(0)
min(η1(π

(−1)
1 (a)), η2(π

(−1)
2 (a)))da.

For all i ∈ {1, 2}, the function Ψ ◦ π̂i ◦ ϕ(−1)
i is Lipschitz continuous with a constant

lower than 1.
Proof. For i = 1 or 2, let a be real such that ϕ1(u

?
1) < a < ϕ1(1) if i = 1, 0 <

a < ϕ2(u
?
2) if i = 2. Within such a condition, we have π̂i(ϕ

(−1)
i (a)) = πi(ϕ

(−1)
i (a)).

Let us calculate the derivative of the function πi ◦ ϕ(−1)
i . Let b 6= a be a real such

that ϕ1(u
?
1) < b < ϕ1(1) if i = 1, 0 < b < ϕ2(u

?
2) if i = 2; setting A = ϕ

(−1)
i (a) and

B = ϕ
(−1)
i (b), we have

πi(ϕ
(−1)
i (b)) − πi(ϕ

(−1)
i (a))

b− a
=
πi(B) − πi(A)

ϕi(B) − ϕi(A)
.

Let us denote by I(A,B) the interval [A,B] if B ≥ A, [B,A] otherwise. Using the
definition of ϕi, we have

(

min
C∈I(A,B)

ηi(C)

)

(πi(B) − πi(A)) ≤ ϕi(B) − ϕi(A) ≤
(

max
C∈I(A,B)

ηi(C)

)

(πi(B) − πi(A)),

and therefore there exists C ∈ I(A,B) such that ϕi(B) − ϕi(A) = ηi(C)(πi(B) −
πi(A)). Thus

πi(ϕ
(−1)
i (b)) − πi(ϕ

(−1)
i (a))

b− a
=

1

ηi(C)
,

which gives, letting b→ a, (πi◦ϕ(−1)
i )′(a) = 1

ηi(ϕ
(−1)
i

(a))
. We thus get that the function

Ψ ◦ π̂i ◦ ϕ(−1)
i has a derivative in a which is

(Ψ ◦ π̂i ◦ ϕ(−1)
i )

′

(a) = Ψ′(πi(ϕ
(−1)
i (a)))(πi ◦ ϕ(−1)

i )′(a) =
Ψ′(πi(ϕ

(−1)
i (a)))

ηi(ϕ
(−1)
i (a))

.
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Using the definition of Ψ, we get Ψ′(πi(y)) ≤ ηi(y) for y = ϕ
(−1)
i (a). Gathering these

results, we get that

(Ψ ◦ π̂i ◦ ϕ(−1)
i )

′

(a) ≤ 1.

If i = 1 and 0 < a < ϕ1(u
?
1), or if i = 2 and ϕ2(u

?
2) < a < 1, then the function

Ψ ◦ π̂i ◦ ϕ(−1)
i is constant, which implies a zero derivative. This completes the proof

of the lemma.

The system (1.5)–(1.9) is a nonlinear parabolic problem defined on a heterogeneous
domain. Since in the general case, such a problem does not have any strong solution,
we now give the definition of a weak solution to this problem.

Definition 1.3. Under Assumptions 1.1, a weak solution u of the problem (1.5)–
(1.9) is defined by

1. for all i ∈ {1, 2}, u = ui in Ωi × (0, T ) with

ui ∈ L∞(Ωi × (0, T )), 0 ≤ ui ≤ 1 a.e. and ϕi(ui) ∈ L2(0, T ;H1(Ωi)),

2. for all ψ ∈ Ctest = {h ∈ H1(Ω × (0, T )), h(., T ) = 0},

2
∑

i=1









∫ T

0

∫

Ωi

[φiui(x, t)ψt(x, t) −∇ϕi(ui(x, t)).∇ψ(x, t)] dxdt+
∫

Ωi

φiuini(x, 0)ψ(x, 0)dx









= 0,

3. the function w : Ω × (0, T ) → R defined by (x, t) 7→ Ψ(π̂i(ui(x, t))) for a.e.
(x, t) ∈ Ωi × (0, T ), i = 1, 2, belongs to L2(0, T ;H1(Ω)).

Remark 1.4. This weak formulation is sufficient to impose (1.5),(1.6),(1.8),(1.9)
on regular solutions. The last condition given in Definition 1.3 is a functional method
to impose the condition (1.7).

In the homogeneous case, i.e. φ1 = φ2, π1 = π2 and η1 = η2, classical results
of existence and uniqueness of a solution are available (see for instance [1] and [6]
for a uniqueness result in more general cases). A simplified case of (1.5)–(1.9) has
been handled in the heterogeneous case in [5], where the authors handle the case
d = 1, Ω1 = (−∞, 0), Ω2 = (0,+∞), and for i = 1, 2, φi = 1, ηi(u) = kiu and
πi(u) = (1 + u)/

√
ki, where 0 < k2 < k1 (note that only the problem of the oil

trapping is considered here, since the physical conditions ηi(1) = 0 is not ensured).
Under additional hypotheses of regularity on the initial data, the authors get the
existence and the uniqueness of the solution to the problem (1.5)–(1.9). We focus in
this paper on the convergence of a numerical scheme for the approximation of u, in the
general framework of Assumptions 1.1. Up to a subsequence, we prove (see Theorem
2.15) the convergence of the finite volume scheme given by the equations (2.2)–(2.4)
to a weak solution in the sense of Definition 1.3. As an immediate consequence, the
convergence of the scheme gives the existence of a solution to the problem (1.5)–(1.9)
(see Corollary 2.17). Similar works have already been done for example in [12], [13] in
the case of a homogeneous domain. Therefore, in the following proofs, we only insist
on the new elements which appear in our study, mainly related to the presence of two
domains linked by the equations (1.6)-(1.7) (or (2.4) for the discrete problem). We
end up this study with numerical results (see §3) and concluding remarks on ongoing
works and future prospects (see §4).
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2. Study of a finite volume scheme. In this section, we study a finite volume
scheme discretizing the equations (1.5)–(1.9). First we define an admissible discretiza-
tion of Ω × (0, T ).

2.1. Admissible discretization of Ω × (0, T ).
Definition 2.1 (Admissible mesh). We denote by M an admissible finite volume

discretization on a domain Ω ; M is composed of a triplet (T , E ,P) with T = T1

⋃ T2,
E = E1

⋃ E2 and P = P1

⋃P2 which satisfy the following properties.
• For i ∈ {1, 2}, Ti is a family of control volumes which are nonempty open

polygonal convex disjoint subsets of Ωi. These elements satisfy
⋃

K∈Ti

K = Ωi.

We denote by ∂K = K \ K the boundary of volume K and by m(K) its
measure (its length for d = 1, its area for d = 2, its volume for d = 3).

• For i ∈ {1, 2}, Ei stands for the set of the edges of the control volumes in Ti.
For all σ ∈ Ei, there exist a hyperplane E of R

d and a control volume K ∈ Ti
such that σ = E

⋂

∂K and σ is a nonempty open subset of E. We denote
by EK the subset of E composed of the edges of the volume K. Then we have

∂K =
⋃

σ∈EK

σ. For any σ ∈ Ei, we have

– either σ ∈ Eint,i = {σ ∈ Ei, ∃ (K,L) ∈ T 2
i , K 6= L such that σ =

K
⋂

L 6= ∅} (in that case σ is also denoted by K|L),
– or σ ∈ EΓ = {σ ∈ Ei, ∃ (K,L) ∈ T1×T2, K 6= L such that σ = K

⋂

L 6=
∅},

– or σ ∈ Eext,i = {σ ∈ Ei, ∃K ∈ Ti such that σ̄ = ∂K
⋂

(∂Ωi \ Γ) 6= ∅}.
• For i ∈ {1, 2}, Pi refers to a family of points (xK)K∈T satisfying the following

properties:
– xK ∈ K,
– for all L ∈ Tj , j ∈ {1, 2}, the straight line (xK , xL) going through xK

and xL is orthogonal to K|L.
We also set

– TΓ = {(K,L), K ∈ T1, L ∈ T2, K|L ∈ EΓ},
– Eint = Eint,1

⋃ Eint,2
⋃ EΓ,

– Eext = Eext,1
⋃ Eext,2.

For i = 1, 2, the set of the neighbouring volumes of a volume K ∈ Ti within
Ωi is represented by N(K) = {L ∈ Ti, K|L ∈ EK}. The unit normal of an
edge K|L ∈ Eint outward to K is denoted by −→n K,L. The area of an edge σ
is denoted by m(σ). For all K ∈ T , σ ∈ EK, dK,σ stands for the euclidean
distance between xK and the edge σ and for K|L ∈ Eint, dK|L is the euclidean
distance between xK and xL. Using these notations the transmissivity τK|L

through K|L is equal to
m(K|L)

dK|L
and, for σ ∈ Eext with σ ∈ EK , the trans-

missivity τK,σ through σ is equal to
m(σ)

dK,σ
. For i ∈ {1, 2} and K|L ∈ Eint,i,

we denote by DK|L the union of the two cones with the respective vertices xK
and xL and the basis K|L. For σ ∈ Eext such that σ ∈ EK , Dσ is the cone
with vertex xK and basis σ.

We set size(M) = sup{diam(K),K ∈ T }. The regularity of the mesh is defined by

regul(M) =
size(M)

minK∈T ,σ∈EK
dK,σ

.(2.1)
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In this paper, for the sake of simplicity, we restrict our study to constant time steps.
But all results stated in the following can be adjusted to variable time steps.

Definition 2.2 (Admissible time discretization of (0, T )).
A discretization of (0, T ) is given by an integer M ∈ N such that δt = T

M+1 . The
increasing sequence of times (tn)n∈{0...M+1} which discretizes (0, T ) is then given by
tn = nδt.

Definition 2.3 (Admissible discretization of Ω × (0, T )).
An admissible discretization D of Ω× (0, T ) is composed of a pair (M,M) where

M is an admissible discretization of Ω and M ∈ N (see Definitions 2.1 and 2.2). We
then denote size(D) = max(size(M), δt).

2.2. Discrete functional properties. Let D be an admissible discretization
of the domain Ω × (0, T ) (see Definition 2.3), K ∈ T and n ∈ {0 . . .M}. For a
variable u, we denote by un+1

K its approximation over the volume K and over the time
interval ]nδt, (n + 1)δt] and by (u0

K)K∈T a piecewise constant approximation of the
initial condition. We denote by

• X (T ) the set of piecewise constant functions over the mesh T : uT ∈ X (T )
is defined, for all x ∈ Ω, by uT (x) = uK for x ∈ K,

• X (D) the set of piecewise constant functions over the discretization D : uD ∈
X (D) is defined, for all n ∈ {0 . . .M}, by uD(., t) = un+1

T ∈ X (T ) for t ∈
]nδt, (n+ 1)δt].

We introduce the notation δuK,L = uL − uK .
For i ∈ {1, 2}, the discrete L2(0, T ;H1(Ωi))-seminorm is defined as follows:

Definition 2.4. Let Ω × (0, T ) be a domain satisfying H1-1 and D be an ad-
missible discretization of this domain in the sense of Definition 2.3. For i ∈ {1, 2},
the L2(0, T ;H1(Ωi))-seminorm of a function uD ∈ X (D) is defined by

|uD|21,D,i =

M
∑

n=0

δt
∑

K|L∈Eint,i

τK|L(δun+1
K,L)2.

2.3. An implicit scheme. The initial condition u0
K is given by

u0
K =

1

m(K)

∫

K

uini(x) dx, ∀K ∈ T .(2.2)

For the following time steps, n ∈ {0, . . . ,M}, we compute a discrete solution in
saturation (un+1

K )K∈T thanks to the scheme

m(K)φi
un+1
K − unK

δt
+

∑

L∈N(K)

τK|L
(

ϕi(u
n+1
K ) − ϕi(u

n+1
L )

)

+

∑

σ∈EΓ
T EK

τK,σ

(

ϕi(u
n+1
K ) − ϕi(u

n+1
K,σ )

)

= 0, K ∈ Ti, i ∈ {1, 2}
(2.3)

where, for all (K,L) ∈ TΓ, and for given values of un+1
K and un+1

L , the values
un+1
K,K|L, u

n+1
L,K|L ∈ [0, 1] are the unique solutions (according to Lemma 2.5 below) of

the system
{

τK,K|L(ϕ1(u
n+1
K ) − ϕ1(u

n+1
K,σ )) = τL,K|L(ϕ2(u

n+1
L,σ ) − ϕ2(u

n+1
L )),

π̂1(u
n+1
K,σ ) = π̂2(u

n+1
L,σ ).

(2.4)
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Lemma 2.5. Under Assumptions 1.1, let αi > 0 be given for i = 1, 2. Let
(a, b) ∈ R

2. Then there exists one and only one pair (c, d) ∈ [0, 1]2 such that

α1(ϕ1(a) − ϕ1(c)) = α2(ϕ2(d) − ϕ2(b))

and

π̂1(c) = π̂2(d).

We then denote c = U1(a, b, α1, α2) and d = U2(a, b, α1, α2). Then the functions
U1 and U2 are continuous and nondecreasing with respect to a and b. Moreover, the
following inequalities hold

0 ≤ (ϕ1(a) − ϕ1(c))(π1(a) − π1(c)) ≤ (ϕ1(a) − ϕ1(c))(π1(a) − π2(b)),
0 ≤ (ϕ2(d) − ϕ2(b))(π2(d) − π2(b)) ≤ (ϕ2(d) − ϕ2(c))(π1(a) − π2(b)).

(2.5)

Proof. Let us take as unknowns the values C = ϕ1(c) and D = ϕ2(d) and let us
denote A = ϕ1(a) and B = ϕ2(b). Then (C,D) is solution of

α1C + α2D = α1A+ α2B,(2.6)

π̂1(ϕ
(−1)
1 (C)) = π̂2(ϕ

(−1)
2 (D)).(2.7)

Let us first consider the case where α1A + α2B ≤ α1ϕ1(u
?
1). Since this implies

C ≤ ϕ1(u
?
1), we have necessarily D = 0 according to (2.7). Thus the solution is

obtained, taking D = 0 and C = (α1A + α2B)/α1. In this case, since D ≤ B, we
have C ≥ A, and since π2(b) ≥ π2(0) ≥ π1(c) ≥ π1(a), we get (2.5).

We now consider the case where α1ϕ1(u
?
1) < α1A+α2B < α1ϕ1(1)+α2ϕ2(u

?
2). Since

in this case we necessarily have ϕ1(u
?
1) < C and D < ϕ2(u

?
2) (see (2.7)), the relation

C = ϕ1(π
(−1)
1 (π2(ϕ

(−1)
2 (D)))) holds, and since the function

D 7→ α1ϕ1(π
(−1)
1 (π2(ϕ

(−1)
2 (D)))) + α2D is continuous and strictly increasing, the

system has one and only one solution (C,D). We then get in this case that π1(c) =
π2(d), and since π1(a) − π1(c) has the same sign as π2(d) − π2(b), we get (2.5).

Finally, the case α1ϕ1(1) + α2ϕ2(u
?
2) ≤ α1A + α2B is symmetric with the first case,

and we get C = ϕ1(1) and D = (α1(A − ϕ1(1)) + α2B)/α2. We then have in this
case C ≥ A and thus D ≤ B, and since π2(b) ≥ π2(d) ≥ π1(1) ≥ π1(a), we again get
(2.5). In all these cases, C and D have been expressed as continuous nondecreasing
functions of A and B, so the same conclusion holds for c and d as functions of a and
b.

Remark 2.6. It is possible to show that C and D, seen as functions of A = ϕ1(a)
and B = ϕ2(b) verify, for a.e. (a, b) ∈ R

2,

0 ≤ ∂C

∂A
≤ 1, 0 ≤ ∂D

∂A
≤ α1

α2
, 0 ≤ ∂C

∂B
≤ α2

α1
and 0 ≤ ∂D

∂B
≤ 1.

Now we can state the L∞-stability of the scheme and then the existence of a solution
to the equations (2.2)–(2.4).
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2.4. L∞-stability of the scheme. If Ω were a homogeneous porous medium
we could prove that the discrete solution in saturation satisfies a maximum principle
depending on the initial condition [12]. Here, in presence of a heterogeneity, this result
does not hold any more.

Proposition 2.7. Under Assumptions 1.1, let D be an admissible discretization
of the domain Ω × (0, T ) (see Definition 2.3) and un+1

T ∈ X (T ), n ∈ {0 . . .M}, the
solution to the system (2.2)–(2.4) (the existence and uniqueness of such a solution is
shown in Proposition 2.8). Then un+1

T satisfies

∀K ∈ T , 0 ≤ un+1
K ≤ 1.(2.8)

Proof. For all K ∈ Ti, i ∈ {1, 2}, equations (2.2)–(2.4) imply

un+1
K = HK(unK , (u

n+1
L )L∈T )

with

HK(a, (aL)L∈T ) =
1

1 + λK

(

a+ λKaK+

δt

m(K)φi









∑

L∈N(K)

τK|L (ϕi(aL) − ϕi(aK)) +

∑

σ∈EΓ

T

EK

τK,σ (ϕi(aK,σ) − ϕi(aK))









)

,

and

λK =
δtLϕ

m(K)φi





∑

L∈N(K)

τK|L +
∑

σ∈EΓ

T

EK

τK,σ





and where, for all (K,L) ∈ TΓ, aK,K|L is defined by
aK,K|L = U1(aK , aL, τK,K|L, τL,K|L) and aL,K|L = U2(aK , aL, τK,K|L, τL,K|L) (the
functions U1 and U2 are defined in Lemma 2.5).
Lemma 2.5 implies that the function HK(a, (aL)L∈T ) is nondecreasing with respect
to a and to aL for all L ∈ T (including the case L = K).
Let us prove the above proposition by induction on n. It is true for n = 0. We assume
that is true for n, and that there is Kmax ∈ T such that Kmax = maxK∈T (un+1

K ) and
un+1
Kmax

> 1. Using the monotony of the function HKmax , we have

1 < un+1
Kmax

≤ HKmax(1, (u
n+1
Kmax

)L∈T ) =
1 + λKmaxu

n+1
Kmax

1 + λKmax

.

We then get a contradiction with the existence of such a Kmax. In the same way, we
prove that there is no Kmin ∈ Ti such that Kmin = minK∈T (un+1

K ) and un+1
Kmin

< 0.

2.5. Existence and uniqueness of a discrete solution.
Proposition 2.8. Under Assumptions 1.1, let D be an admissible discretization

of the domain Ω×(0, T ) (see Definition 2.3). Then, for all n ∈ {0 . . .M}, there exists
one and only one solution un+1

T ∈ X (T ) to the system (2.2)–(2.4).
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Proof. The system composed of the equations (2.2)–(2.4) can be seen as a system
with unknowns (un+1

K )K∈T thanks to Lemma 2.5.
We set N = card(T ) and we consider the application ψ : R

N × [0, 1] → R
N defined

by ((uK)K∈T , λ) 7→ (vK)K∈T with, for all K ∈ T ,

vK = m(K)φi
uK − unK

δt
+ λ

∑

L∈N(K)

τK|L (ϕi(uK) − ϕi(uL)) +

λ
∑

σ∈EΓ
T EK

τK,σ (ϕi(uK) − ϕi(uK,σ)) ,

where, for all (K,L) ∈ TΓ, we take uK,K|L = U1(uK , uL, τK,K|L, τL,K|L) and uL,K|L =
U2(uK , uL, τK,K|L, τL,K|L) (the functions U1 and U2 are defined in Lemma 2.5).
The function ψ is continuous with respect to each one of its arguments. Moreover,
reproducing the proof of the Proposition 2.7 we can prove that, for all λ ∈ [0, 1],
ψ((uK)K∈T , λ) = (0)K∈T implies uK ∈ [0, 1] for all K ∈ T . Since ψ((uK)K∈T , 0) is
linear, an argument based on the topological degree (see [11] and references therein)
implies that ψ((uK)K∈T , 1) = (0)K∈T admits at least one solution.
Turning now to the proof of uniqueness, we assume that, for a given n ∈ {0 . . .M},
(uK)K∈T and (ũK)K∈T are two solutions of (2.2)–(2.4). Using, for all K ∈ T , the
functions HK defined in the proof of Proposition 2.7, we get that

max(uK , ũK) ≤ HK(unK , (max(uL, ũL))L∈T )

and

min(uK , ũK) ≥ HK(unK , (min(uL, ũL))L∈T ).

If we multiply the above inequalities by (1 + λK)m(K)φi, if we substract the second
inequality from the first one, and if we sum the result over K ∈ T , the exchange
terms between all the pairs of neighbouring grid blocks and in particular the terms
including λK vanish, and we obtain

∑

i=1,2

∑

K∈Ti

m(K)φi|uK − ũK | ≤ 0,

which proves the uniqueness of the solution.

2.6. Convergence. The remaining part of this section is devoted to the con-
vergence proof of the scheme (2.2)–(2.4). The first step consists in obtaining some
compactness properties for the sequence of approximated solutions. This will be done
thanks to Kolmogorov’s theorem. In particular this theorem requires that the space
and time translates of the approximated solutions remain bounded.

2.6.1. Upper bound on the space translates.
Proposition 2.9. Under Assumptions 1.1, let D be an admissible discretization

of the domain Ω×(0, T ) in the sense of Definition 2.3. Let uD ∈ X (D) be the solution
of the equations (2.2)–(2.4). Then, there is C1 > 0 only depending on ηj , πj , Ωj ,
j ∈ {1, 2} such that

0 ≤
M
∑

n=0

δt
∑

(K,L)∈EΓ

τK,K|L

(

ϕ1(u
n+1
K ) − ϕ1(u

n+1
K,K|L)

)(

π1(u
n+1
K ) − π2(u

n+1
L )

)

=

M
∑

n=0

δt
∑

(K,L)∈EΓ

τL,K|L

(

ϕ2(u
n+1
L,K|L) − ϕ2(u

n+1
L )

)(

π1(u
n+1
K ) − π2(u

n+1
L )

)

≤ C1

(2.9)
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and, for i ∈ {1, 2}, there exists C2 > 0 depending on C1 and on Cη such that

|ϕi(uD)|21,D,i ≤ C2 .(2.10)

Proof. For n ∈ {0 . . .M} and K ∈ Ti, we multiply the equation (2.3) by πi(u
n+1
K )

and we sum over the discretization D. It leads to

∑

i = 1 . . . 2,
n = 0 . . .M,
K ∈ Ti













0

B

@
m(K)φi(u

n+1
K − u

n
K) + δt

0

B

@

X

L∈N(K)

τK|L

0

B

@
ϕi(u

n+1
K ) − ϕi(u

n+1
L )

1

C

A
+

X

σ∈EΓ
T

EK

τK,σ

0

B

@
ϕi(u

n+1
K ) − ϕi(u

n+1
K,σ )

1

C

A

1

C

A

1

C

A
πi(u

n+1
K )













= 0.

Accumulation term
Since the function πi(.) is nondecreasing, the function gi defined by gi(u) =

∫ u

0 πi(a) da
is therefore convex. So we have

(un+1
K − unK)πi(u

n+1
K ) ≥ gi(u

n+1
K ) − gi(u

n
K).

Thus we get

M
∑

n=0

∑

K∈Ti

m(K)φi(u
n+1
K − unK)πi(u

n+1
K ) ≥

∑

K∈Ti

m(K)φi(gi(u
M+1
K ) − gi(u

0
K)).

Moreover we notice that

|
∑

K∈Ti

m(K)φi(gi(u
M+1
K ) − gi(u

0
K))| ≤ m(Ωi)

(

∫ 1

0

|πi(a)| da
)

.

Diffusion term

As ϕi(b) − ϕi(a) ≤ Cη

∫ b

a

π
′

i(u) du, we have

M
∑

n=0

δt
∑

K|L∈Eint,i

τK|L

(

ϕi(u
n+1
K ) − ϕi(u

n+1
L )

)(

πi(u
n+1
K ) − πi(u

n+1
L )

)

≥

1

Cη

M
∑

n=0

δt
∑

K|L∈Eint,i

τK|L
(

ϕi(u
n+1
K ) − ϕi(u

n+1
L )

)2

.

For (K,L) ∈ TΓ, we apply (2.5). This leads to

τK,σ(ϕ1(u
n+1
K ) − ϕ1(u

n+1
K,σ ))(π1(u

n+1
K ) − π2(u

n+1
L )) ≥ 0.

Finally, gathering the lower and upper bounds we obtained, we get

2
∑

i=1

|ϕi(uD)|21,D,i ≤ Cη

2
∑

i=1

m(Ωi)
(

∫ 1

0

|πi(a)| da
)

= C2

and

0 ≤
M
∑

n=0

δt
∑

σ=K|L∈EΓ

τK,σ

(

ϕ1(u
n+1
K ) − ϕ1(u

n+1
K,σ )

)(

π1(u
n+1
K ) − π2(u

n+1
L )

)

≤

2
∑

i=1

m(Ωi)
(

∫ 1

0

|πi(a)| da
)

= C1 ,
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which concludes the proof.
We recall the following result, given in [11].

Lemma 2.10. Under Assumptions 1.1, let D be an admissible discretization of
the domain Ω × (0, T ) in the sense of Definition 2.3. Let uD ∈ X (D) be given by the
equations (2.2)–(2.4). Let i = 1, 2 and ξ ∈ R

d. We define the domain Ωi,ξ by

Ωi,ξ = {x ∈ Ωi / [x, x+ ξ] ⊂ Ωi}.

Then the function ϕi(uD) satisfies

∫ T

0

∫

Ωi,ξ

|ϕi(uD(x+ ξ, t) − ϕi(uD(x, t)|2dxdt ≤

|ξ|
(

|ξ| + 2size(M)
)

|ϕi(uD)|21,D,i.
(2.11)

This result produces the following proposition.
Proposition 2.11. Under Assumptions 1.1, let D be an admissible discretization

of the domain Ω × (0, T ) in the sense of Definition 2.3. Let uD ∈ X (D) be given by
the equations (2.2)–(2.4). Let i = 1, 2 and ωi be an open bounded subset of Ωi with a
regular boundary. We define the function ϕD,ωi

by ϕD,ωi
(x, t) = ϕi(uD(x, t)) for a.e.

(x, t) ∈ ωi × (0, T ), ϕD,ωi
(x, t) = 0 if (x, t) /∈ ωi × (0, T ). Then there exists C3 > 0,

only depending on T , ηj , πj , Ωj , j ∈ {1, 2} and of ωi, such that

‖ϕD,ωi
(.+ ξ, .) − ϕD,ωi

‖2
L2(Rd+1) ≤ C3 |ξ|

(

|ξ| + 1
)

, ∀ξ ∈ R
d.(2.12)

Proof. This result is a direct consequence of Proposition 2.9 and of Lemma 2.10
and of the fact that the measure of {x ∈ ωi, [x, x + ξ] 6⊂ ωi} is bounded by Cωi

|ξ|.

2.6.2. Upper bound on the time translates.
Proposition 2.12. Under Assumptions 1.1, let D be an admissible discretization

of the domain Ω × (0, T ) in the sense of Definition 2.3. Let uD ∈ X (D) be given by
the equations (2.2)–(2.4). Let i = 1, 2 and ωi be an open bounded subset of Ωi with a
regular boundary. We define the function ϕD,ωi

by ϕD,ωi
(x, t) = ϕi(uD(x, t)) for a.e.

(x, t) ∈ ωi × (0, T ), ϕD,ωi
(x, t) = 0 if (x, t) /∈ ωi × (0, T ). Then there exists C4 > 0,

only depending on T , ηj , πj , φj , Ωj , j ∈ {1, 2} and of ωi, such that, for size(M)
small enough,

∫

R

∫

Ω

(

ϕD,ωi
(x, t+ τ) − ϕD,ωi

(x, t)
)2

dxdt ≤ C4 |τ |, ∀τ ∈ R.(2.13)

Proof. We suppose that τ ∈ (0, T ) (the case τ < 0 is deduced from τ > 0
and the case τ > T is a consequence of an easy bound of

∫

R

∫

Ω
(ϕD,ωi

(x, t + τ) −
ϕD,ωi

(x, t))2)dxdt). Let i = 1, 2 and let Θi ∈ C∞
c (Ωi, [0, 1]) be such that, for all x ∈ ωi,

Θi(x) = 1. We suppose that size(M) is small enough so that Θi vanishes on allK ∈ Ti
having edges on the boundary of Ωi. For allK ∈ Ti, we set Θi,K =

1

m(K)

∫

K

Θi(x) dx.

Since the function ϕi is Lipschitz continuous, we have

∫ T−τ

0

∫

Ω

Θi(x)φi

(

ϕi(uD(x, t+ τ)) − ϕi(uD(x, t))
)2

dxdt ≤ Lϕ

∫ T−τ

0

A(t) dt
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with

A(t) =

∫

Ω

Θi(x)φi

(

ϕi(u(x, t+ τ)) − ϕi(u(x, t))
)(

u(x, t+ τ) − u(x, t)
)

dx.

Following the method used in [11], we first write A(t) as

A(t) =
∑

K∈Ti

(

m(K)Θi,Kφi

(

ϕi(u
n1(t)+1
K )−ϕi(un0(t)+1

K )
)

M
∑

n=0

Xn(t, t+τ)(un+1
K −unK)

)

where the indices n0(t) and n1(t) satisfy n0(t)δt < t ≤ (n0(t) + 1)δt, n1(t)δt < t+ τ ≤
(n1(t)+1)δt, and the function Xn(a, b) is such that Xn(a, b) = 1 if a < b and nδt ∈ [a, b[,
and Xn(a, b) = 0 otherwise.
Using the definition of the scheme, we get

A(t) =
∑

K∈Ti

(

Θi,K

(

ϕi(u
n1(t)+1
K ) − ϕi(u

n0(t)+1
K )

)

M
∑

n=0

Xn(t, t+ τ)
∑

L∈N(K)

δtτK|L
(

ϕi(u
n+1
K ) − ϕi(u

n+1
L )

)

)

.

Gathering the terms by edges leads to

A(t) =

M
∑

n=0

δtXn(t, t+ τ)
∑

K|L∈Eint,i

τK|L







Θi,K

 

ϕi(u
n1(t)+1

K
) − ϕi(u

n0(t)+1

K
)

!

−

Θi,L

 

ϕi(u
n1(t)+1

L
) − ϕi(u

n0(t)+1

L
)

!






×

 

ϕi(u
n+1
K ) − ϕi(u

n+1
L )

!

.

Applying the equality 2(Θi,Ka−Θi,Lb) = (Θi,K + Θi,L)(a− b) + (Θi,K −Θi,L)(a+ b)
we get that

A(t) ≤ A0(t) +A1(t) +A2(t)

with

A0(t) =
M
∑

n=0

δtXn(t, t+ τ)
∑

K|L∈Eint,i

τK|L

∣

∣

∣ϕi(u
n1(t)+1
K ) − ϕi(u

n1(t)+1
L )

∣

∣

∣×
∣

∣ϕi(u
n+1
K ) − ϕi(u

n+1
L )

∣

∣ ,

A1(t) =

M
∑

n=0

δtXn(t, t+ τ)
∑

K|L∈Eint,i

τK|L

∣

∣

∣ϕi(u
n0(t)+1
K ) − ϕi(u

n0(t)+1
L )

∣

∣

∣×
∣

∣ϕi(u
n+1
K ) − ϕi(u

n+1
L )

∣

∣

and

A2(t) =

M
∑

n=0

δtXn(t, t+ τ)
∑

K|L∈Eint,i

τK|LLϕ |Θi,K − Θi,L|
∣

∣ϕi(u
n+1
K ) − ϕi(u

n+1
L )

∣

∣ .
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We then use Young’s inequality, Proposition 2.9 and the regularity of the function Θ,
to bound A0(t), A1(t) and A2(t) by a sum of terms under the form

∑M
n=0 δtXn(t, t+

τ)an,
∑M
n=0 δtXn(t, t+ τ)an0(t), and

∑M
n=0 δtXn(t, t+ τ)an1(t), such that 0 ≤ an for all

n = 0 . . . ,M , and such that δt
∑M

n=0 a
n is bounded independently on the discretiza-

tion. We then use the properties
∫ T−τ
0

∑M
n=0 δtXn(t, t+ τ)andt ≤ τδt

∑M
n=0 a

n,
∫ T−τ
0

∑M
n=0 δtXn(t, t+ τ)an0(t)dt ≤ τδt

∑M
n=0 a

n and
∫ T−τ
0

∑M
n=0 δtXn(t, t+ τ)an1(t)dt ≤ τδt

∑M
n=0 a

n, proven in [11].

2.6.3. Upper bound on the discrete L2(0, T ;H1(Ω))-semi-norm of the
function wD. Let uD be given by the equations (2.2)–(2.4). We consider wD defined
by wn+1

K = Ψ(π̂i(u
n+1
K )), for all i = 1, 2 and K ∈ Ti. The following proposition states

that the discrete L2(0, T ;H1(Ω))-semi-norm of the function wD remains bounded. We
first recall the definition of this semi-norm defined on the whole domain Ω.

Definition 2.13. Let Ω×(0, T ) be a domain satisfying H1-1 and D be an admis-
sible discretization of this domain in the sense of Definition 2.3. The L2(0, T ;H1(Ω))-
semi-norm of a function uD ∈ X (D) is defined by

|uD|21,D =

M
∑

n=0

δt
∑

K|L∈Eint

τK|L(δun+1
K,L)2 =

∑

i=1,2

|uD|21,D,i +

M
∑

n=0

δt
∑

(K,L)∈TΓ

τK|L(δun+1
K,L)2.

Proposition 2.14. Under Assumptions 1.1, let D be an admissible discretization
in the sense of Definition 2.3. Let uD ∈ X (D) be the solution of the equations (2.2)–
(2.4). Then, there exists C5 > 0 only depending on ηj , πj , Ωj , j ∈ {1, 2} such
that

|wD|21,D ≤ C5 .(2.14)

Proof. For K ∈ Ti and L ∈ N(K), using the property of Lipschitz continuity of

Ψ ◦ π̂i ◦ ϕ(−1)
i (see Lemma 1.2), we get

(wn+1
K − wn+1

L )2 ≤ (ϕi(u
n+1
K ) − ϕi(u

n+1
L ))2

and therefore, we deduce from (2.10)

|wD|21,D,i ≤ C2 .

We now consider the case (K,L) ∈ TΓ. We have, since π̂1(u
n+1
K,K|L) = π̂2(u

n+1
L,K|L),

τK|L(Ψ(π̂1(u
n+1
K )) − Ψ(π̂2(u

n+1
L )))2 ≤ τK,K|L(Ψ(π̂1(u

n+1
K )) − Ψ(π̂1(u

n+1
K,K|L)))2

+τL,K|L(Ψ(π̂2(u
n+1
L,K|L)) − Ψ(π̂2(u

n+1
L )))2,

thanks to the convexity of the function x 7→ x2 and to 1/τK|L = 1/τK,K|L+1/τL,K|L.

We again use the properties of Ψ ◦ π̂i ◦ ϕ(−1)
i (see Lemma 1.2):

(Ψ(π̂1(u
n+1
K )) − Ψ(π̂1(u

n+1
K,K|L)))2 ≤ (ϕ1(u

n+1
K ) − ϕ1(u

n+1
K,K|L))2,

and

(Ψ(π̂2(u
n+1
L,K|L)) − Ψ(π̂2(u

n+1
L )))2 ≤ (ϕ2(u

n+1
L ) − ϕ2(u

n+1
L,K|L))2.
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Now, using (2.5), we have, for all (K,L) ∈ TΓ,

(

ϕ1(u
n+1
K ) − ϕ1(u

n+1
K,K|L)

)2

≤
(

ϕ1(u
n+1
K ) − ϕ1(u

n+1
K,K|L)

)

Cη

(

π1(u
n+1
K ) − π1(u

n+1
K,K|L)

)

≤
(

ϕ1(u
n+1
K ) − ϕ1(u

n+1
K,K|L)

)

Cη

(

π1(u
n+1
K ) − π2(u

n+1
L )

)

.

(2.15)

Then, from (2.9) and (2.15), we get

M
∑

n=0

δt
∑

(K,L)∈TΓ

τK,K|L
(

Ψ(π̂1(u
n+1
K )) − Ψ(π̂1(u

n+1
K,K|L))

)2

≤ CηC1 ,

and in the same way

M
∑

n=0

δt
∑

(K,L)∈TΓ

τL,K|L
(

Ψ(π̂2(u
n+1
L,K|L)) − Ψ(π̂2(u

n+1
L ))

)2

≤ CηC1 .

Thus we get

M
∑

n=0

δt
∑

(K,L)∈TΓ

τK|L(wn+1
K − wn+1

L )2 ≤ 2C1 Cη .

Gathering the above results prove that there exists C6 > 0, only depending on ηj ,
πj , Ωj , j ∈ {1, 2} such that

|wD|21,D ≤ C6

QED.

2.6.4. Convergence of the scheme toward the weak problem. Thanks to
the previous propositions, we are now able to prove the following theorem which states
the convergence of the scheme (2.2)–(2.4) towards a solution to the weak problem
introduced in Definition 1.3.

Theorem 2.15. Under Assumptions 1.1, let us consider a sequence (Dm)m∈N, of
admissible discretizations in the sense of Definition 2.3, such that there exists α > 0
with regul(Mm) ≤ α for all m ∈ N and such that size(Dm) → 0 as m → +∞.
Let uDm

= um ∈ X (Dm) be the solution of the equations (2.2)–(2.4) for D = Dm.
Then there exists a subsequence of (Dm, um)m∈N, again denoted by (Dm, um)m∈N,
and a weak solution u of problem (1.5)–(1.9) in the sense of Definition 1.3, such that
um → u in Lp(Ω × (0, T )) for all p <∞.

Remark 2.16. A proof that the problem (1.5)–(1.9) admits at most one regular
solution can be obtained following the method of [5]. A uniqueness result on the
solution of the weak problem given in Definition 1.3 implies that the whole sequence
of discrete solutions converges.

Proof.
Step 1: Existence of a convergent subsequence of (Dm, um)m∈N.

For any open subset ωi of Ωi, i = 1, 2, Propositions 2.7, 2.11 and 2.12 ensure that
the hypotheses of Kolmogorov’s theorem are satisfied. We thus get the existence
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of a subsequence of (ϕDm,ωi
)m∈N, converging in L2(ωi × (0, T )) to some function

ϕωi
∈ L2(ωi × (0, T )). Using an increasing sequence of domains ωi,k which converges

towards Ωi, we can extract, thanks to a diagonal process, a subsequence again denoted
by (Dm, um)m∈N such that (ϕDm,ωi,m

)m∈N converges in L2(ωi,k× (0, T )) for all k ∈ N,
to some bounded function ϕ̃i ∈ L2(ωi,k × (0, T )) for all k ∈ N. We then obtain that
(ϕi(um))m∈N converges in L2(Ωi × (0, T )) to ϕ̃i. Since ϕi is continuous and strictly
increasing, this implies that, up to a subsequence, (um)m∈N converges towards a
function ui ∈ L2(Ωi × (0, T ))

⋂

L∞(Ωi × (0, T )) for all i ∈ {1, 2}.
To prove that ϕi(ui) ∈ L2(0, T ;H1(Ωi)) for all i ∈ {1, 2}, it is sufficient to show

that ∂ϕi(ui)
∂x

∈ L2(Ωi × (0, T )). Let m ∈ {0 . . .M}, ψi ∈ C∞
c (Ωi × (0, T )) and ε > 0

be such that supp(ψi) = {(x, t) ∈ Ωi × (0, T ) / dist(x,Rd \ Ωi) ≤ ε}. Using the
Cauchy-Schwarz inequality and the Lemma 2.10 we have, for all |ξ| ≤ ε,

∫

Ωi,ξ×(0,T )

(

ϕi(um(x+ ξ, t)) − ϕi(um(x, t))
)

ψi(x, t)dxdt ≤
(

|ξ|(|ξ| + 2size(Mm))C2

)
1
2 ‖ψi‖L2(Ωi×(0,T)).

Passing to the limit and after a change of variable we obtain

∫

Ωi,ξ×(0,T )

(

ψi(x− ξ, t) − ψi(x, t)
)

ϕi(ui(x, t))dxdt ≤

|ξ|(C2 )
1
2 ||ψi||L2(Ωi×(0,T )).

(2.16)

Now if we denote by {ei, i = 1 . . . d} the canonical basis of R
d and if we take ξ =

λei, i ∈ {1 . . . d} with |λ| < ε in (2.16), we then have as ε→ 0

−
∫

Ωi,ξ×(0,T )

∂ψi(x, t)

∂xi
ϕi(ui(x, t))dxdt ≤ (C2 )

1
2 ‖ψi‖L2(Ωi×(0,T )),

∀ψi ∈ C∞
c (Ωi × (0, T )),

which implies that ∂ϕi(ui)
∂x

∈ L2(Ωi × (0, T )).

Step 2: u is a weak solution to the problem (1.5)–(1.9).

Let us consider C̃test = {h ∈ C2(Ω × [0, T ]) / h(., T ) = 0} which is dense in Ctest.
Let ψ ∈ C̃test and, for m ∈ N, let um be given by the equations (2.2)–(2.4) for
D = Dm. For all n ∈ {0 . . .M} and for all K ∈ T , we multiply the equation (2.3)
by ψnK = ψ(xK , nδt), and we sum these equalities over the volume control set and

n = 0, . . . ,M . We get
∑2

i=1(Ei,1,m +Ei,2,m) +E1|2,m = 0, with

Ei,1,m =
M
∑

n=0

∑

K∈Ti

m(K)φi(u
n+1
K − unK)ψnK ,

Ei,2,m = −
M
∑

n=0

δt
∑

K∈Ti

∑

L∈N(K)

τK|L
(

ϕi(u
n+1
L ) − ϕi(u

n+1
K )

)

ψnK ,

E1|2,m =

M
∑

n=0

δt
∑

(K,L)∈TΓ

τK,K|L

(

ϕ1(u
n+1
K ) − ϕ1(u

n+1
K,K|L)

)

(

ψnK − ψnL

)

.
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Following some classical proofs (see [11]), we get that

lim
m→+∞

Ei,1,m = −
∫ T

0

∫

Ωi

φiui(x, t)ψt(x, t)dxdt −
∫

Ωi

φiuini(x)ψ(x, 0)dx.

Convergence of Ei,2,m:

Gathering the terms by edges in Ei,2,m leads to

Ei,2,m =

M
∑

n=0

δt
∑

σ=K|L∈Eint,i

τK|L
(

ϕi(u
n+1
K ) − ϕi(u

n+1
L )

)(

ψnK − ψnL

)

.

We apply the method presented, for example in [10] (which is a discrete version of a
strong-weak convergence), to conclude that

lim
m→+∞

Ei,2,m =

∫ T

0

∫

Ωi

∇ϕi(ui)(x, t).∇ψ(x, t) dx dt.(2.17)

Convergence of E1|2,m:

We have

E2
1|2,m ≤





M
∑

n=0

δt
∑

(K,L)∈TΓ

τK,K|L
(

ϕ1(u
n+1
K ) − ϕ1(u

n+1
K,K|L)

)2



×




M
∑

n=0

δt
∑

(K,L)∈TΓ

m(K|L)
(ψnK − ψnL)2

dK,K|L



 .

But we notice that, thanks to the regularity of the function ψ, there exists Cψ > 0
such that |ψnK − ψnL| ≤ CψdK|L, which implies with (2.1)

M
∑

n=0

δt
∑

(K,L)∈TΓ

m(K|L)
(ψnK − ψnL)2

dK,K|L
≤ 4Tm(Γ)C2

ψαsize(M).

Thus, using (2.9) and (2.15), we get

M
∑

n=0

δt
∑

(K,L)∈TΓ

τK,K|L
(

ϕi(u
n+1
K ) − ϕi(u

n+1
K,K|L)

)2

≤ CηC1 .

Gathering the above results produces

lim
m→+∞

E1|2,m = 0.

Step 3: Let us prove that w ∈ L2(0, T ;H1(Ω)).

Following the proofs of Lemma 2.10 and of ϕ(ui) ∈ L2(0, T ;H1(Ωi)) (see Step 1), we
obtain that w ∈ L2(0, T ;H1(Ω)) using inequality (2.14).

As an immediate consequence of Theorem 2.15 we get
Corollary 2.17. Under Assumptions 1.1, Problem (1.5)–(1.9) admits at least

one weak solution in the sense of Definition 1.3.
As an illustration of the previous results, we now give numerical results in the following
section.
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3. Numerical results. Let us consider a domain Ω such that Ω1 = (0, 1) and
Ω2 = (1, 2). The mobilities are given by

ηo(u) =







u if 0 ≤ u ≤ 1,
0 if u < 0,
1 otherwise,

ηw(u) =







1 − u if 0 ≤ u ≤ 1,
1 if u < 0,
0 otherwise

and the capillary pressure is given by

π1(u) =







5u2 if 0 ≤ u ≤ 1,
0 if u < 0,
5 otherwise,

π2(u) =







5u2 + 1 if 0 ≤ u ≤ 1,
1 if u < 0,
6 otherwise.

In that case, u?1 = 1√
5
, u?2 = 2√

5
. For the initial condition we take

uini(x) =

{

0.9 if x < 0.9,
0 otherwise.

To discretize the domains Ωi, we use a regular mesh such that dx = size(M) = 10−2

for all i ∈ {1, 2} and we use a constant time step δt = 1
6 .10−3. Figures 3.1 represent

functions u(., t), π(., u(., t)), ϕ(., u(., t)) for t = 0.007 and t = 0.05. In the first case
oil is trapped under the interface Γ located in x = 1 and the capillary pressure is
discontinuous whereas in the second case oil can flow through Γ and the continuity of
the capillary pressure is ensured. Figure 3.2 represents the evolution of the flux and
of the saturations on the interface Γ according to the time variable. We have also
done tests with the initial condition

uini(x) =

{

0.9 if x > 1.2,
0 otherwise

where oil already lies in the capillary barrier. Figures 3.3, 3.4 show the results we
obtained. We notice that, although the capillary pressure is discontinuous, oil can flow
through Γ from Ω2 to Ω1 while satisfying the conditions (2.4) since, for all t ∈ [0, 0.05],
u2(t) = 0.

4. Concluding remarks. In this paper we have established a convergence prop-
erty for the scheme (2.2)–(2.4) towards a weak solution of the problem (1.5)–(1.9) in
the sense of Definition 1.3. It remains to prove the uniqueness of such a weak solu-
tion. Further works will be done with taking a total flux and the gravity gradient into
account (see [8]).
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versité de Marne-La-Vallée, 2004.

[9] B. G. Ersland, M. S. Espedal and R. Nybo, Numerical methods for flow in a porous medium
with internal boundaries, Computational Geosciences, 2 (1998), pp. 217–240.
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Fig. 3.1. u(., t), π(., u(., t)), ϕ(., u(., t)) for t = 0.007 (a) and t = 0.05 (b).
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Fig. 3.2. Evolution of the flux and of the saturations on the interface.
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Fig. 3.3. u(., t), π(., u(., t)), ϕ(., u(., t)) for t = 0.007 (a) and t = 0.05 (b).
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Fig. 3.4. Evolution of the flux and of the saturations on the interface.


