NUMERICAL APPROXIMATION OF A TWO-PHASE FLOW
PROBLEM IN A POROUS MEDIUM WITH DISCONTINUOUS
CAPILLARY FORCES
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Abstract. We consider a simplified model of a two-phase flow through a heterogeneous porous
medium. Focusing on the capillary forces motion, a nonlinear degenerate parabolic problem is
approximated in a domain shared in two homogeneous parts, each of them being characterized by
its relative permeability and capillary curves functions of the phase saturations. We first give a
weak form of the conservation equations on the whole domain, with a new general expression of the
conditions at the interface between the two regions. We then propose a finite volume scheme for
the approximation of the solution, which is shown to converge to a weak solution in 1D, 2D or 3D
domains. We conclude with presenting some numerical tests.
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1. Introduction. Simulations of two-phase flows through heterogeneous porous
media are widely used in petroleum engineering. For example, for exploration pur-
poses, the basin modeling aims to reconstruct the geological history of a sedimentary
basin and in particular the migration of hydrocarbon components at geological time
scale. The reservoir simulation is devoted to the understanding and the prediction of
fluid flows occurring during production processes.

One of the most important consequences of the presence of heterogeneities in a porous
medium is the phenomenon of capillary entrapment. This phenomenon occurs at the
interface between two geological layers where discontinuous capillary thresholds ap-
pear. Indeed if the mean pore radius in one layer is smaller than in the other, the oil
phase must reach an access pressure so that the oil phase can enter the least permeable
layer. In a sedimentary basin, this mechanism can induce the formation of oilfields.
On the other hand, in reservoir engineering, the capillary trapping can reduce the
recovery factor since large quantities of oil can remain trapped. Therefore, for this
kind of applications, one need a precise understanding of this phenomenon on the
physical plane as on the mathematical plane as well.

The physical principles which govern these flows and the mathematical models can
be found in [2], [3], [4], [7]. However, the phenomenon of capillary trapping and its
mathematical modelization have only been completed in some simplified cases [5], [9],
[14].

The aim of this paper is to propose a general model for this phenomenon, and to
give the mathematical study of the convergence of a scheme which can be used in the
industrial context.

We thus consider an incompressible and immiscible oil-water flow through a 1D, 2D
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or 3D heterogeneous and isotropic porous medium 2. Using Darcy’s law, the conser-
vation of oil and water phases is given, for all (z,t) € Q x (0,T), by

(1.1)

—qb(x)M —div (uw(x,u(x,t))(pr (x,t) — pwg)) =0,

o(z) Ou(,?) — div(uo(:n, u(z,t))(Vpo(z,t) — pog)) =0,
Po(x,t) — pu(x,t) = 7(x,u(z, t))

where the function ¢ is the porosity of the medium, u € [0,1] is the oil saturation
(and therefore 1 — u is the water saturation), 7(x, u) is the capillary pressure, g is the
gravity acceleration. The indices 0 and w respectively stand for the oil and the water
phase. Thus, for 8 = o, w, pg is the pressure of the phase 3, ug(x, ) is the mobility
of the phase 8 and pg is the density of the phase 3. The unknowns of the problem
are the functions u, p,, and p,.

Focusing on the modeling of flow at the interface between two different porous mate-
rials, we make the following assumptions.

ASSUMPTIONS 1.1.

H1-1.

H1-2.

H1-3.

H1-4.

H1-5.

The domain Q is such that Q = Q1| Q2. The subdomains Q1 and Qs are
disjoint open segments (if d = 1), polygonal (if d = 2) or polyhedral (if d = 3)
bounded connected subsets of RY.  We assume that the common boundary
between Q1 and Qa, T = 90, (00, has a strictly positive and finite d — 1-
measure. The real T > 0 is the length of the considered time period.

The function ¢ takes the strictly positive constant value 0 < ¢; < 1 in Q;, for
i=1,2.

For g € {o,w}, i = 1,2 and for all x € Q; pg(x,.) = ugi. oy 1S a strictly
increasing continuous function satisfying fio(u) = o, (0) =0 for all u <0
and pioi(w) = o i(1) for all w > 1. p,; is a strictly decreasing continuous
function satisfying puw,;(u) = py,i(1) =0 for all w > 1 and puy,; () = fiy,i(0)
for all u < 0.

For all x € Q;, n(z,.) = m € C°(R,R) and m; is such that its restric-
tion m;[0,1] to [0,1] is strictly increasing, belongs to CY(]0,1],R) and satisfies
mi(u) = m;(0) for all w <0 and 7;(u) = m;(1) for all u > 1. We assume that
m1(0) < m(0) < m(1) < ma(1). We denote by u} the unique real in [0, 1]
satisfying m1(uy) = m2(0). Thus, for all u € [0,u}), we have m (u) < ma(u).
We denote by uj the unique real in [0,1] satisfying mo(uz) = m1(1). Thus, for
all w € (ub, 1], we have w1 (u) < w2(u). (See Figure 1.1.)

The initial condition in saturation ui; € L>®(Q) and 0 < uin;i(z) < 1, for a.e.
x € Q.

The following conditions must be satisfied on the traces of u;, pg; and Vpg; on
T' x (0,T), respectively denoted by w;r, pg,ir and (Vp)s.r (see [3]):
1. for any 8 = o, w, the flux of the phase 8 must be continuous:

(1.2)up,1(u1,r)((Vp)g1r — psg) Wir = —pp2(uzr)((Vp)sar — psg) Mar

where 7, r is the unit normal of I' outward to €;,

. for any 8 = o, w, either (pg is continuous) or (pg is discontinuous and pg = 0);

since the saturation is itself discontinuous across I', one must express the
mobility at the upstream side of the interface. This gives

(1.3)  paa(uir)(psar —ppar)t —pp2(uzr)(pser —psar)t =0
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along with po;r — pw,ir = m(u;r), for i = 1,2, where we denote, for all
a € R, a™ = max(a,0).
The relations (1.3) can be directly expressed in terms of relations between u; r and
pgir, B=o0,w, =12

1. If 0 < wyp < uj, then gy 1(u1,r) > 0; this implies py 11 < pw2,r. Since
m(u1r) < m2(0) < ma(uzr), we get Po1,r < Do2,r, Which in turn implies
to2(uzr) = 0, and thus ugr = 0. Therefore piy 2(uzr) > 0, and pyor <
Dw,1,r. Thus py, 21 = pw1,r. In this case, the oil phase is trapped in €25, and
the water flows across I'.

2. If uf < wyr and ugr < uj, then m2(0) < m(u1r), and ma(uzr) < mi(1).
Since pio,1(u1,r) > 0, then po1r < po,o.r and fio2(uzr) = 0 0r Po 1.1 = Do2,r-
Similarly, since fiy,2(u2r) > 0, then py 1,0 > Pw,2,r and py1(u1,r) = 0 or
DPw,1,T = Dw,2,r. Therefore, we get po 1.0 —Pw,1,0 < Po,2.7 — Pw,2,r, Which gives
mi(u1r) < me(ugr). If we consider the case po2(uar) = 0, we get ugr =0
and thus m2(0) = 71 (u1,r). Similarly, if we consider the case gy 1(u1r) =
0, we get ma(uz,r) = m(1). If we have at the same time po2(uzr) > 0
and fip,1(u1,r) > 0, then po1r = poor and puw1r = Pw,er, which implies
71 (u1,r) = m2(ug,r). Therefore, in all cases, we get m1(u1,r) = m2(ua,r), and
consequently p, 1.1 = Po,2,r and P10 = Pw,2r. In this case, both phases
flow across I.

3. If uy < ugr <1, asimilar discussion yields u;r = 1 and po1,r = po,2,r. In
this case, the water phase is trapped in 4, and the oil flows across I'.

A consequence of this discussion is that, in all cases, the resulting condition on the oil
saturations at the boundary I" is given by 71 (u1 r) = *2(u2,r), defining the functions
71 and 72 by 1 @ w — max(m(u), m2(0)) and T2 : w — min(ma(u), 71 (1)).
Now let us introduce the g(lok))al pressure
uq(x,t .
pi(z,t) = pyilx,t) + /0 #%wg(a)da (first introduced by Chavent,
see for example [7]) and the functions n; : u +— Hoi () +(1) and ¢; @ u+—
w Ho,i (u) + ,u/w,i(u)
n;i(a)m;(a)da. We denote by L, the Lipschitz constant of ¢; and by C,, an upper

0
bound of n;(u), v € R, ¢ = 1 and 2. Using these notations we have for (z,t) €
Q; % (0,T),i=1,2,

qﬁiw —div (uo,i(ui(x,t))(vp'i(x,t) — pog)) — Ap;i(ui(z,t)) =0,
(1.4)
—div | Y i@, )V, t) = > ppiluia,t)psg | = 0.
B=o0,w B=o0,w

We neglect in the first equation of (1.4) the term div [uo,i (ui(x, 1)) (VDi(x,t) — pog)] in
front of Ap;(u;(z,t)), since this is sufficient to get the mathematical properties which
are involved in the oil trapping phenomenon, as shown in the numerical examples
at the end of this paper. Equations (1.2), (1.3) and (1.4) then produce within this
simplified case the following equations, the solution of which are the functions u;(z,t),
(x,t) € Q; x (0,T):

(15) (bl% — A(pz(uz) =0,in ; x (O,T),fOI' all ¢ € {1,2},
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(1.6) V(pl(ul,r).ﬁl,r = —VLPQ(UQ,F).WQ,F, onI' x (07T)
and
(1.7) 71 (u1r) = 72 (uzr),

which summarizes the discussion induced by (1.3). Considering the problem of the
migration of oil, we prescribe a homogeneous Neumann condition, which is expressed
by

(1.8) (., w)Vr(,u). ™ =0, on IQ x (0,T).

For t = 0, we have

(1.9) w(x,0) = Ujni, in Q.

Before giving the weak formulation of the problem we prove the following Lemma.
LEMMA 1.2. Under Assumptions 1.1, let ¥ : [m2(0),71(1)] — R be the strictly

increasing function defined by p — U(p) = ffz(o) min(m(ﬂg_l)(a)),ng(ﬂg_l)(a)))da.
For all i € {1,2}, the function ¥ o 7t; o @571) 18 Lipschitz continuous with a constant

lower than 1.

Proof. For i = 1 or 2, let a be real such that ¢1(u}) < a < 1(1)ifi=1,0<
a < p(u3) if ¢ = 2. Within such a condition, we have fri(cpz(-_l)(a)) = m-(cpz(-_l)(a)).
Let us calculate the derivative of the function 7; o <p§_1). Let b # a be a real such
that p1(u}) <b < e1(1)ifi=1,0<b < pa(u3) if i = 2; setting A = cpg_l)(a) and

B= (pz(-_l)(b), we have

m( @V ®) =m0 (@) | m(B) — mi(A)

b—a i(B) — ¢i(A)

Let us denote by I(A, B) the interval [A, B] if B > A, [B, A] otherwise. Using the
definition of ¢;, we have

IN

( i m(C)) (m:(B) — m(A)) < pu(B) — il A)

CeI(A,B)

i i(B) — mi(A)),

L n(C) ) (ri(B) — (4)

and therefore there exists C' € I(A, B) such that ¢;(B) — vi(4) = n;(C)(m;(B) —
m;(A)). Thus

Tl ) —me V@) 1

b—a n;(C)’

which gives, letting b — a, (mowgfl))'(a) = . We thus get that the function

(

%

-1
ni(e{ " (a)
Vom0 Y has a derivative in a which is

-1
_ Vre V@)

(=1

(Todiop! ) (a) = ¥ (mi(pl (@) (mi 0 ol ™) (a)
ni(w; ' (a))
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Using the definition of ¥, we get U/ (m;(y)) < n;(y) for y = @Efl)(a). Gathering these
results, we get that

(Po;o @E_l)),(a) <1

Ifi=1and 0 < a < @i(uf), or if i = 2 and pa(ul) < a < 1, then the function
Yo, o <pz(-_1) is constant, which implies a zero derivative. This completes the proof

of the lemma. 0

The system (1.5)—(1.9) is a nonlinear parabolic problem defined on a heterogeneous
domain. Since in the general case, such a problem does not have any strong solution,
we now give the definition of a weak solution to this problem.
DEFINITION 1.3. Under Assumptions 1.1, a weak solution u of the problem (1.5)-
(1.9) is defined by
1. for allie {1,2}, u=wu; in Q; x (0,T) with

u; € L°(Q; x (0,T)), 0<u; <1 ae. and @;(u;) € L*(0,T; H' (),

2. fOT all IZJ S Ctest = {h S Hl(Q X (07T))7 h(7T) = 0}?

2 /0 /Q.[(biuz'(x,t)wt(x,t) — Vi(ui(z,t).Vip(x, t)] dedt+

i=1 /Q Gittini(2,0)1) (2, 0)dx

:07

3. the function w : Q x (0,T) — R defined by (x,t) — U (7;(u;(x,t))) for a.e.
(x,t) € Q; x (0,T), i = 1,2, belongs to L*(0,T; H*(Q)).
Remark 1.4. This weak formulation is sufficient to impose (1.5),(1.6),(1.8),(1.9)
on regular solutions. The last condition given in Definition 1.3 is a functional method
to impose the condition (1.7).

In the homogeneous case, i.e. ¢1 = ¢o, m = 7o and 71 = 109, classical results
of existence and uniqueness of a solution are available (see for instance [1] and [6]
for a uniqueness result in more general cases). A simplified case of (1.5)—(1.9) has
been handled in the heterogeneous case in [5], where the authors handle the case
d=1,Q = (—00,0), Q5 = (0,+00), and for i = 1,2, ¢; = 1, n;(u) = k;u and
mi(u) = (1 + u)/vVk;, where 0 < ko < ki (note that only the problem of the oil
trapping is considered here, since the physical conditions n;(1) = 0 is not ensured).
Under additional hypotheses of regularity on the initial data, the authors get the
existence and the uniqueness of the solution to the problem (1.5)—(1.9). We focus in
this paper on the convergence of a numerical scheme for the approximation of u, in the
general framework of Assumptions 1.1. Up to a subsequence, we prove (see Theorem
2.15) the convergence of the finite volume scheme given by the equations (2.2)—(2.4)
to a weak solution in the sense of Definition 1.3. As an immediate consequence, the
convergence of the scheme gives the existence of a solution to the problem (1.5)—(1.9)
(see Corollary 2.17). Similar works have already been done for example in [12], [13] in
the case of a homogeneous domain. Therefore, in the following proofs, we only insist
on the new elements which appear in our study, mainly related to the presence of two
domains linked by the equations (1.6)-(1.7) (or (2.4) for the discrete problem). We
end up this study with numerical results (see §3) and concluding remarks on ongoing
works and future prospects (see §4).
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2. Study of a finite volume scheme. In this section, we study a finite volume
scheme discretizing the equations (1.5)—(1.9). First we define an admissible discretiza-
tion of 2 x (0,7).

2.1. Admissible discretization of Q x (0,T).

DEFINITION 2.1 (Admissible mesh). We denote by M an admissible finite volume
discretization on a domain 2 ; M is composed of a triplet (T,E,P) with T = T, | Tz,
E=E & and P =P Py which satisfy the following properties.

o Fori € {1,2}, 7; is a family of control volumes which are nonempty open

polygonal convex disjoint subsets of ;. These elements satisfy U K=0Q,.
KeT;
We denote by 0K = K \ K the boundary of volume K and by m(K) its
measure (its length for d = 1, its area for d = 2, its volume for d = 3).
For i € {1,2}, & stands for the set of the edges of the control volumes in T;.
For all o € &;, there exist a hyperplane E of R® and a control volume K € T;
such that @ = E(OK and o is a nonempty open subset of E. We denote
by Ex the subset of £ composed of the edges of the volume K. Then we have
oK = U o. For any o € &;, we have
oc€EK
— cither 0 € Epei = {0 € &, 3 (K,L) € T2, K # L such that G =
KL #0} (in that case o is also denoted by K|L),
—orocecér={0c€cé&, I(K,L) e TyxTy, K# L suchthatoc = K(\L #
®}7
— 010 €&yt = {0 €&, K € T; such that 7 = 0K (09 \T) # 0}.
Fori € {1,2}, P; refers to a family of points (x k) keT satisfying the following
properties:
— T € K,
— for all L € T;, j € {1,2}, the straight line (xx,xr) going through xx
and xy, is orthogonal to K|L.
We also set
— Tr={(K,L), Ke€Ti, LeT,, K|LE€é&r},
— Eint = Eint.1 U Eint2 U Er,
- Cext — Ee:ct,l U Sext,Q-
For i = 1,2, the set of the neighbouring volumes of a volume K € T; within
Q; is represented by N(K) = {L € T;, K|L € Ex}. The unit normal of an
edge K|L € Eipy outward to K is denoted by W . The area of an edge o
is denoted by m(o). For oll K € T, 0 € Ek, dk,» stands for the euclidean
distance between x i and the edge o and for K|L € E;pe, dr, 18 the euclidean
distance between xg and xr. Using these notations the transmissivity Tr|r

K|L
through K|L is equal to M and, for o € E.py with o € Ek, the trans-
K|L
o ) m(o) .
misswity Tk o through o is equal to . Forie {1,2} and K|L € Eins i,
K,o

we denote by D, the union of the two ‘cones with the respective vertices x i
and xy, and the basis K|L. For 0 € E¢pt such that o € Ex, D, is the cone
with vertex rx and basis o.

We set size(M) = sup{diam(K),K € T}. The reqularity of the mesh is defined by

(2.1)

size(M)

MiNgeT ocex Ko

regul(M) =
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In this paper, for the sake of simplicity, we restrict our study to constant time steps.
But all results stated in the following can be adjusted to variable time steps.

DEFINITION 2.2 (Admissible time discretization of (0,7)).

A discretization of (0,T) is given by an integer M € N such that & = ML_H The
increasing sequence of times (tn)nefo...m+1y which discretizes (0,T) is then given by
t, = nét.

DEFINITION 2.3 (Admissible discretization of Q x (0,7)).

An admissible discretization D of Q x (0,T) is composed of a pair (M, M) where
M is an admissible discretization of @ and M € N (see Definitions 2.1 and 2.2). We

then denote size(D) = max(size(M), &).

2.2. Discrete functional properties. Let D be an admissible discretization
of the domain Q x (0,7T") (see Definition 2.3), K € 7 and n € {0...M}. For a
variable u, we denote by u?jl its approximation over the volume K and over the time
interval |nd, (n + 1)&] and by (u%)ker a piecewise constant approximation of the
initial condition. We denote by
e X(T) the set of piecewise constant functions over the mesh 7 : ugr € X(7)
is defined, for all z € Q, by ur(z) = ug for z € K,
e X (D) the set of piecewise constant functions over the discretization D : up €
X (D) is defined, for all n € {0... M}, by up(.,t) = us™ € X(T) for t €
nét, (n + 1)dt].
We introduce the notation dug, ;, = ur — uk.
For i € {1,2}, the discrete L?(0,T; H(£;))-seminorm is defined as follows:
DEFINITION 2.4. Let Q x (0,T) be a domain satisfying H1-1 and D be an ad-
missible discretization of this domain in the sense of Definition 2.3. For i € {1,2},
the L?(0,T; H*(Q;))-seminorm of a function up € X (D) is defined by

M
luplip, =Y & > (gt

n=0 K|L€$-;nt,i

2.3. An implicit scheme. The initial condition u is given by

1
(2.2) ud = —/ Uini(x) dz, VK € T.
K m(K) Jk
For the following time steps, n € {0,..., M}, we compute a discrete solution in
+1

saturation (u" ") ker thanks to the scheme

n+1

u —u” n .
m(K)ébiKTK + > i (PR — i) +
(2.3) LEN(K)
Z TK,o (@z(u?jl) - (pz(u?(trl)) = Oa K e 7;; i€ {172}
oeér ﬂgK

where, for all (K,L) € 7r, and for given values of u and u’L’H, the values

u?fll(' L”LLTZ/TI%' . € [0,1] are the unique solutions (according to Lemma 2.5 below) of
the system

n+1
K

ay | Toel R ) = T )
71 (u?(t,l) o (uf;l ).
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LeEMMA 2.5. Under Assumptions 1.1, let o; > 0 be given for i = 1,2. Let
(a,b) € R?. Then there exists one and only one pair (c,d) € [0,1]? such that

a1(p1(a) — p1(c)) = az(p2(d) — p2(b))

and

We then denote ¢ = Ui(a,b,a1,a2) and d = Us(a,b,a1,a2). Then the functions
Ui and Uy are continuous and nondecreasing with respect to a and b. Moreover, the
following inequalities hold

(2.5) 0 < (¢1(a) = p1(c))(m(a) — mi(c)) < (¢1
' 0 < (p2(d) — p2(b))(m2(d) — m2(b)) < (p2(d) — p2(c))(m1(a) — m2(D)).

Proof. Let us take as unknowns the values C' = ¢;(c) and D = p3(d) and let us
denote A = ¢1(a) and B = ¢2(b). Then (C, D) is solution of

(2.6) a1C + asD = a1 A+ as B,
(2.7) #1(p7V(C)) = 7o (S (D)).

Let us first consider the case where ay A + asB < ajp1(uf). Since this implies
C < ¢1(uy), we have necessarily D = 0 according to (2.7). Thus the solution is
obtained, taking D = 0 and C' = (1A 4+ aaB) /1. In this case, since D < B, we
have C' > A, and since m3(b) > m2(0) > 71 (c) > m1(a), we get (2.5).

We now consider the case where a1 (u}) < an A+ aaB < a1p1(1) + aspa(ub). Since
in this case we necessarily have ¢ (u}) < C and D < pa(ub) (see (2.7)), the relation
C=¢ (Wg_l)(ﬁg (cpg_l)(D)))) holds, and since the function

D — ajpr (7r§71)(7r2(<pgfl)(D)))) + a3D is continuous and strictly increasing, the
system has one and only one solution (C, D). We then get in this case that 71(c) =
m2(d), and since 7 (a) — m1(c) has the same sign as m(d) — m2(b), we get (2.5).
Finally, the case a1¢1(1) + agpa(ul) < a1 A 4+ a2 B is symmetric with the first case,
and we get C' = 1(1) and D = (a1(A — ¢1(1)) + a2B)/as. We then have in this
case C' > A and thus D < B, and since ma(b) > ma(d) > m1(1) > m1(a), we again get
(2.5). In all these cases, C' and D have been expressed as continuous nondecreasing
functions of A and B, so the same conclusion holds for ¢ and d as functions of a and
b. a

Remark 2.6. Tt is possible to show that C' and D, seen as functions of A = ¢4 (a)
and B = py(b) verify, for a.e. (a,b) € R?,

acC oD aC  as oD
< — <1 < — < — < — < = < — < 1.
OsgasblsgasgVsapsq V=35 =

Now we can state the L°°-stability of the scheme and then the existence of a solution
to the equations (2.2)—(2.4).
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2.4. L*°-stability of the scheme. If {2 were a homogeneous porous medium
we could prove that the discrete solution in saturation satisfies a maximum principle
depending on the initial condition [12]. Here, in presence of a heterogeneity, this result
does not hold any more.

PROPOSITION 2.7. Under Assumptions 1.1, let D be an admissible discretization
of the domain 2 x (0,T) (see Definition 2.3) and vt € X(T), n € {0... M}, the
solution to the system (2.2)—(2.4) (the existence and uniqueness of such a solution is
shown in Proposition 2.8). Then u?‘l satisfies

(2.8) VK €T, 0<ui <1.

Proof. For all K € T;, i € {1,2}, equations (2.2)—(2.4) imply

ui™ = Hy (ul, (up™)rer)

with
1
Hg(a,(ar)rer) = 15w a+ Agag+
Z Tr|L (pilar) — pilak)) +
a LEN(K)
m(K)o; > Tre (pilaxe) —gilax)) | )’
oceér ngK

and

/\K% Z TK|L+ Z TK,o

LEN(K) ocefr NEk

and where, for all (K, L) € Tr, ak x|z, is defined by

ag. x|z = Uilar,ar, Tk k|0, To,x)z) and ap g1z = Uz(ak,ar, Tk k|0, 7o, k(L) (the
functions Uy and Us are defined in Lemma 2.5).

Lemma 2.5 implies that the function Hg (a, (ar)rer) is nondecreasing with respect
to a and to ar, for all L € 7 (including the case L = K).

Let us prove the above proposition by induction on n. It is true for n = 0. We assume
that is true for n, and that there is K.« € 7 such that K. = maXKeT(u?(“) and

u}’(:ix > 1. Using the monotony of the function Hg,,, , we have
1+ )\Kmax L
L<uptl < Higp (1 (W] per) = — 50—t
max max 1 + )\K

max

We then get a contradiction with the existence of such a K,,x. In the same way, we
prove that there is no Ky, € 7; such that K, = minKeT(u’}(ﬂ) and u’}(tjln < 0.

O

2.5. Existence and uniqueness of a discrete solution.

PROPOSITION 2.8. Under Assumptions 1.1, let D be an admissible discretization
of the domain Qx (0,T) (see Definition 2.3). Then, for alln € {0... M}, there exists
one and only one solution u%™" € X(T) to the system (2.2)—(2.4).
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Proof. The system composed of the equations (2.2)—(2.4) can be seen as a system
with unknowns (u}‘(“) KeT thanks to Lemma 2.5.
We set N = card(7) and we consider the application ¢ : RY x [0,1] — R¥ defined
by ((UK)KGTv )\) = (UK)KGT Wlthv for all K € T7

U — Uy
v = m(K)gbi% +A D rin (piuk) — @i(ur)) +
LeN(K)

A Y i (pilur) = piluk))

oeér ﬂgK

where, for all (K, L) € Tr, we take ug x|, = Ui(uk,ur, T k|1, 7o,k |2) and up, k|, =
Us(urk,ur, Ti, k|1, Tr,k|r) (the functions Uy and Us are defined in Lemma 2.5).

The function v is continuous with respect to each one of its arguments. Moreover,
reproducing the proof of the Proposition 2.7 we can prove that, for all A € [0, 1],
Y((ur)ker, \) = (0)ker implies ux € [0,1] for all K € 7. Since ¥((ux)ker,0) is
linear, an argument based on the topological degree (see [11] and references therein)
implies that ¥ ((ux)keT,1) = (0) ker admits at least one solution.

Turning now to the proof of uniqueness, we assume that, for a given n € {0... M},
(ur)ker and (Ug)ker are two solutions of (2.2)—(2.4). Using, for all K € T, the
functions Hg defined in the proof of Proposition 2.7, we get that

max(uK,&K) S HK(U’?(, (max(uL, '&/L))LGT)
and
min(ug, ) > Hg (uf, (min(ur, @r))rer).

If we multiply the above inequalities by (1 + Ax)m(K)¢;, if we substract the second
inequality from the first one, and if we sum the result over K € 7, the exchange
terms between all the pairs of neighbouring grid blocks and in particular the terms
including Ax vanish, and we obtain

ST m(K)éiluk — x| <0,

i=1,2 KeT;
which proves the uniqueness of the solution. d

2.6. Convergence. The remaining part of this section is devoted to the con-
vergence proof of the scheme (2.2)—(2.4). The first step consists in obtaining some
compactness properties for the sequence of approximated solutions. This will be done
thanks to Kolmogorov’s theorem. In particular this theorem requires that the space
and time translates of the approximated solutions remain bounded.

2.6.1. Upper bound on the space translates.

ProOPOSITION 2.9. Under Assumptions 1.1, let D be an admissible discretization
of the domain Q2 x (0,T) in the sense of Definition 2.5. Let up € X (D) be the solution
of the equations (2.2)—-(2.4). Then, there is C1 > 0 only depending on n;, 7, §;,
j €{1,2} such that

M
038 3 mwen i) - k) (mo) - ) -
(2.9), "0 UoheEr

D& Y Tk <so2<uzfém - m(u?l)) <m () — m(um) <o

n=0 (K,L)E&r
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and, for i € {1,2}, there exists Cy > 0 depending on C1 and on C), such that
(2.10) |50i(UD)|iD,i <0Gy

Proof. Forn € {0... M} and K € T;, we multiply the equation (2.3) by m; (u/;™)
and we sum over the discretization D. It leads to

(m(K)¢ (Wit —up) + & ( > ki (w(u?(“) - %(ﬂ“)) +
0

Z LEN(K)
i=l..2, Y e | @i - e | | s
}67], ceErNER

Accumulation term
Since the function m;(.) is nondecreasing, the function g; defined by g;(u) = [ mi(a) da
is therefore convex. So we have

(ug = ufo)mi(ug™) > gi(uit) — gi(ul).

Thus we get
Z Z n+1 _U}l()ﬂ'i(u}?_l) 2 Z m(K)¢i(gi(u M+1) gl(u(}())
n=0 K€T; KeT,

Moreover we notice that
| mE)ougi(ult ) - gi(ule))| < m( /m )l da).
KeT;

Diffusion term

As ¢;(b) — pi(a) < C, / u) du, we have

PILEDY TKL<%<uK+1> ¢Z<uz+1>> <m<u}z+1>m<uz“>>z

n=0 K|Le£mt,i
x z &Y et - i)
n=0 K|LEEn.,
For (K, L) € Tr, we apply (2.5). This leads to
o (1 (ug™) = er(ui,)) (m(uith) — ma(up™)) > 0.
Finally, gathering the lower and upper bounds we obtained, we get

2

S el o, < €y (@) [ imtaian) =,

i=1
and

0< Z& > ke <<p (uitty — wl(u;ﬁ})) <7r (upth) 7r2(uz+1)> <

n=0 o=K|L€E&r

/|7rl |da =C1,
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which concludes the proof. ad
We recall the following result, given in [11].

LEMMA 2.10. Under Assumptions 1.1, let D be an admissible discretization of
the domain Q x (0,T) in the sense of Definition 2.3. Let up € X (D) be given by the
equations (2.2)-(2.4). Leti=1,2 and £ € R%. We define the domain Q; ¢ by

Qi,§ = {.’L‘ S Qi / [.Z‘,.’L"f‘f] C Qz}

Then the function @;(up) satisfies

T
/ / loi(up(x + &, t) — @i(up(z,t)|*ddt <
0 Qi e

(2.11)
61(1&1 + 2size(M) ) |1 () .1
This result produces the following proposition.

PRrROPOSITION 2.11. Under Assumptions 1.1, let D be an admissible discretization
of the domain Q x (0,T) in the sense of Definition 2.3. Let up € X (D) be given by
the equations (2.2)—(2.4). Let i =1,2 and w; be an open bounded subset of Q; with a
regular boundary. We define the function ¢p u, by D W, (2, t) = @i(up(z,t)) for a.e.
(x,t) € wi x (0,T), oD w,; (x,t) =0 if (x,t) ¢ w; x (0,T). Then there exists C5 > 0,
only depending on T, n;, 7, Q;, j € {1,2} and of w;, such that

(2.12) D0 (- + &) = ¢Dwi [ F2Ras1) < Cs |§|(|§| + 1)7 Vé € R%.

Proof. This result is a direct consequence of Proposition 2.9 and of Lemma 2.10
and of the fact that the measure of {z € w;, [z,2 + ] ¢ w;} is bounded by C.,|&|.
d

2.6.2. Upper bound on the time translates.

PROPOSITION 2.12. Under Assumptions 1.1, let D be an admissible discretization
of the domain Q x (0,T) in the sense of Definition 2.5. Let up € X (D) be given by
the equations (2.2)—(2.4). Let i =1,2 and w; be an open bounded subset of Q; with a
regular boundary. We define the function ¢p u, by D w, (2, t) = @i(up(z,t)) for a.e.
(x,t) € wy X (0,T), oD w;(x,t) =0 if (x,t) ¢ w; x (0,T). Then there exists Cy > 0,
only depending on T, n;, m;, ¢;, Qy, j € {1,2} and of w;, such that, for size(M)
small enough,

2
(2.13) / / ((pp,wi (X, t+7T) — 0D, (Jc,t)) dedt < Cy|7|, VT € R.
R JQ

Proof. We suppose that 7 € (0,7) (the case 7 < 0 is deduced from 7 > 0
and the case 7 > T is a consequence of an easy bound of [, [,,(¢p.w, (z,t +7) —
©D w; (x,1))?)dxdt). Leti= 1,2 and let ©; € C=(£2;, [0, 1]) be such that, for all z € w;,
O,;(z) = 1. We suppose that size(M) is small enough so that ©; vanishes on all K € 7;

1
having edges on the boundary of ;. For all K € 7;, weset ©; x = —— / O;(z) dx.
m(K) Jk

Since the function ; is Lipschitz continuous, we have

/OT_T | es@s(tuntat+ 1) = eutun(e.)) dode < I, /OT_T Aft) dt
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with
A(t) = / O, (x)p; ((pi(u(x,t +7))— api(u(x,t))) (u(x,t +7)— u(m,t)) dx.
Q

Following the method used in [11], we first write A(t) as

M
At) = Z (m(K)@i,K¢z‘ (%(U}?(UH) pi(upR T ) Z X, (t, t+7)( "+1u7}()>
n=0

KeT;

where the indices ng(t) and nq () satisty no(t)d <t < (no(t) +1)d&, n1()& <t+7 <
(n1(t)+1)d&, and the function X, (a, b) is such that X, (a,b) = 1ifa < band né& € [a, b,
and X, (a,b) = 0 otherwise.

Using the definition of the scheme, we get

A=Y (@ (i T — i)

KeT;
M
St S (el - soxuz“))) .
n=0 LEN(K)
Gathering the terms by edges leads to
M Oi.x (mu?(”“) - w(u?ﬁ(”“)) -
At) = Z AXn(tt+7) Z TK|L x
n=0 K|LEE it i | iup V) - w(uZO‘*W))

(i) - soxuz“)).

Applying the equality 2(0; xa — 0;,1.b) = (0 +0;,1)(a—b) + (0s,xk —O;,r)(a+Db)
we get that

A(t) < Ao(t) + A (t) + Ay (t)

with

M

Aoty = Y ax.(tt+71) > il - %(uzl(wﬂ)’x
n=0 K|LEEint,i
‘(;07, n+1) (Pz(Uerl),
M

Aty = Y.ttt > g fesufTh - (pi(uzo(t)Jrl)’X
n=0 K|LEEint,i
i (uf™) = pilup™)]

and

M

=3 &Xu(tt+7) D> L 1Ok — Oirl |pi(uit) — gi(ulth]
n=0 K|LEEint,i
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We then use Young’s inequality, Proposition 2.9 and the regularity of the function O,
to bound Ay (), A1(t) and A2(t) by a sum of terms under the form Ziw:o &X(t, t+
ma®, M X, (8 t+7)am @ and M X, (¢t 4 7)a™ @) such that 0 < a” for all
n =0..., M, and such that & Zﬁio a™ is bounded independently on the discretiza-
tion. We then use the properties
OTfT Zﬁio AX, (6t + T)adt < T 271\;[:0 a”,
OTiT Zﬁio X, (t,t +T)aOdt < 7ot Zﬁio a™ and
fOTfT Zﬁio X, (t,t + T)a”l(t)dt <7 Zﬁio a™, proven in [11]. O
2.6.3. Upper bound on the discrete L?(0,7; H!(Q2))-semi-norm of the
function wp. Let up be given by the equations (2.2)—(2.4). We consider wp defined
by wittt = U (7;(uh)), for all i = 1,2 and K € 7;. The following proposition states
that the discrete L?(0, T'; H'(2))-semi-norm of the function wp remains bounded. We
first recall the definition of this semi-norm defined on the whole domain €.
DEFINITION 2.13. Let Q2% (0,T) be a domain satisfying H1-1 and D be an admis-
sible discretization of this domain in the sense of Definition 2.3. The L?(0,T; H*(Q))-
semi-norm of a function up € X (D) is defined by

M M
luplip =Y & Y Trp(@p) =D funlipi+ Y & > Trn(duith)?.

n=0 K|LEE;nt i=1,2 n=0 (K,L)e7r

PROPOSITION 2.14. Under Assumptions 1.1, let D be an admissible discretization
in the sense of Definition 2.3. Let up € X (D) be the solution of the equations (2.2)-
(2.4). Then, there exists C5 > 0 only depending on n;, m;, Q;, j € {1,2} such
that

(2.14) lwpli p < Cs.

Proof. For K € 7; and L € N(K), using the property of Lipschitz continuity of
(=1

Voo, ' (see Lemma 1.2), we get
(Wi —wp™)? < (pilui™) — @ilup))?
and therefore, we deduce from (2.10)
lwpltp; < Ca.

. : ~ n+1 oA n+1
We now consider the case (K, L) € Tr. We have, since ﬂl(uK,K‘L) = R (uf 'k 1):

i (U (A1 (uf™)) = C(Re(up ™)) < Tieren (UL (ui™)) = U (ul g )2
7L, (U (T2 (U e ) — W (up ™))%,
thanks to the convexity of the function = — 22 and to Utk =17k k0 +1/70, k) L-
(-1

%

(W (71 (uf)) = (i (e )))? < (or(ug™) = 1 (ufd )%,

We again use the properties of ¥ o 7; 0 ¢ (see Lemma 1.2):

and

(W(Fa(uphe ) — W2 (upt)? < (wa(up™) — pa(uphe )
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Now, using (2.5), we have, for all (K, L) € T,

2

(i) — 1wt ) <
(2.15) pr(ug™) = er(ui g ) ) O (™) — ﬂl(u}l(TIlﬂL)) <

(i) = o1t ) Co (i) = ma(upth)).

Then, from (2.9) and (2.15), we get

M

2
Sa Y mewe (VR - Wi ut,)) <60
n=0 (K,L)eTr

and in the same way

Sa Y mrn (V) - W) < e

n=0 (K,L)ETF

Thus we get

M
dd Y mpwptt —with)? <2010,

n=0 (K,L)eTr

Gathering the above results prove that there exists Cs > 0, only depending on n;,
7, £, j € {1,2} such that

|7~UD|?,D < Cs

QED. O

2.6.4. Convergence of the scheme toward the weak problem. Thanks to
the previous propositions, we are now able to prove the following theorem which states
the convergence of the scheme (2.2)—(2.4) towards a solution to the weak problem
introduced in Definition 1.3.

THEOREM 2.15. Under Assumptions 1.1, let us consider a sequence (Dp,)men, of
admissible discretizations in the sense of Definition 2.3, such that there exists o > 0
with regul(My,) < « for all m € N and such that size(D,,) — 0 as m — +oo.
Let up,, = tum € X(Dy) be the solution of the equations (2.2)-(2.4) for D = D,,.
Then there exists a subsequence of (Dp,, Um)men, again denoted by (D, Um)men,
and a weak solution u of problem (1.5)—(1.9) in the sense of Definition 1.3, such that
U — u in LP(Q x (0,T)) for all p < oc.

Remark 2.16. A proof that the problem (1.5)—(1.9) admits at most one regular
solution can be obtained following the method of [5]. A uniqueness result on the
solution of the weak problem given in Definition 1.3 implies that the whole sequence
of discrete solutions converges.

Proof.

Step 1: Existence of a convergent subsequence of (D,,, um)men-

For any open subset w; of €2;, i = 1,2, Propositions 2.7, 2.11 and 2.12 ensure that
the hypotheses of Kolmogorov’s theorem are satisfied. We thus get the existence
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of a subsequence of (¢p,, w:)men, converging in L?(w; x (0,T)) to some function
¢w; € L*(w; x (0,T)). Using an increasing sequence of domains w;  which converges
towards {2;, we can extract, thanks to a diagonal process, a subsequence again denoted
by (D, ) men such that (©p,, w, .. Jmen converges in L*(w;j, % (0,7T)) for all k € N,
to some bounded function ¢; € L?(w;  x (0,T)) for all k € N. We then obtain that
(@i (um))men converges in L2(Q; x (0,7)) to @;. Since ¢; is continuous and strictly
increasing, this implies that, up to a subsequence, (u;,)men converges towards a
function u; € L?(Q; x (0,T)) (N L>®(; x (0,T)) for all i € {1,2}.

To prove that ¢;(u;) € L*(0,T; H'(€;)) for all i € {1,2}, it is sufficient to show
that 22504 ¢ [2(Q; x (o T)). Let m € {0... M}, ¢ € COO(Q x (0,7)) and € > 0
be such that supp(v;) = {(z,t) € Q; x (0,T) / dist(x,R4\ ;) < €}. Using the
Cauchy-Schwarz inequality and the Lemma 2.10 we have, for all [£| <,

[ (oitumle +€0) = il 1)) il s <
Q;,¢x(0,T) .
(I€1(1g] + 2size(Mm))C2 ) 45l 001

Passing to the limit and after a change of variable we obtain

/ v (5@ =60 = (@) oulus(a ) dadt <

(2.16) |
1€[(C2) 2 [[¥ill L2, x (0.1))-

Now if we denote by {e;,;i = 1...d} the canonical basis of R? and if we take & =
Aei, i € {1...d} with |A] < e in (2.16), we then have as e — 0

0 i .Z‘,t 1
—/ 71/}8( )%(Ui(%t))dxdt < (Cy ); 10l 2202, x (0,7Y)
Qi,ex(0,T) Ti

Wi, € C2(S x (0, 7)),
which implies that 6(’05—(;”) € L%(Qy x (0,7)).
Step 2: u is a weak solution to the problem (1.5)—(1.9).

Let us consider Cioqy = {h € C?(Q x [0,T]) / h(.,T) = 0} which is dense in Ceq.
Let ¥ € Ciest and, for m € N, let u,, be given by the equations (2.2)—(2.4) for
D =Dy Foralln e {0...M} and for all K € 7, we multiply the equation (2.3)
by ¢} = ¥(xzx,nd), and we sum these equalities over the volume control set and

n=0,...,M. Weget Y7 (Ei1m+ Eizm)+ Eijam = 0, with

um—z > mE)bi(uitt — uj)vi,

n= OKGT

Eiom=— Z&Z Z TK|L<% UL ) %(U?(H))?/)%v

n=0 KcT; LEN(K)

Eyom = Z o Z TK.K|L (@1(“?{“) o1 (uly K|L)> (7/)1( 1/’2)-

n=0 (K,L)eTr
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Following some classical proofs (see [11]), we get that

T
lim E;1m= —/ /Q diui(x, t) )y (z, t)dxdt 7/9 itini (z)(x, 0)dx.
& 0 i i

m—+

Convergence of E; o.m:
Gathering the terms by edges in E; 2 ,,, leads to

Eigm = Z& S (et - watut™) (v - v7).

n=0 o=K|LEE;nt,:i

We apply the method presented, for example in [10] (which is a discrete version of a
strong-weak convergence), to conclude that

T
(2.17) hIE Eiom= / / Vi (u;)(z,t).Vi(z,t) dx dt.
me 0 JO;

Convergence of Eyjg -

We have

M
2
Fom< |28 3 mcin (1) — (i) | %

n=0 (K,L)eTr
n o _ ,,m\2
n=0 (K, L)eTF K.K|L

But we notice that, thanks to the regularity of the function v, there exists Cy > 0
such that [y} —¥7| < Cydg |, which implies with (2.1)

Z &y K|L)M < ATm(T)C} asize(M).

n=0 (K,L)eTr K.K|L

Thus, using (2.9) and (2.15), we get

M
Z & Z TK7K|L(501'(U?(+1) — (pi(u?(fll(w)f < C,Ch.

n=0 (K,L)ETF
Gathering the above results produces

lim El\Qm =0.

m——+o0

Step 3: Let us prove that w € L?(0,7; H'(Q)).

Following the proofs of Lemma 2.10 and of ¢(u;) € L2(0,T; H'(£;)) (see Step 1), we
obtain that w € L?(0,T; H*(Q)) using inequality (2.14). u|

As an immediate consequence of Theorem 2.15 we get

COROLLARY 2.17. Under Assumptions 1.1, Problem (1.5)—(1.9) admits at least
one weak solution in the sense of Definition 1.3.
As an illustration of the previous results, we now give numerical results in the following
section.
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3. Numerical results. Let us consider a domain  such that Q; = (0,1) and
Qs = (1,2). The mobilities are given by

u if0<u<l, 1—u if0<u<1,
No(u) =< 0 if u<O, Nw(u) =4 1 if u <0,
1 otherwise, 0 otherwise

and the capillary pressure is given by

5u? if 0 <u <1, 5u24+1 if0<u<l,
mi(u) =< 0 if u <0, ma(u) = ¢ 1 if u <0,
5 otherwise, 6 otherwise.
In that case, u] = %, uy = \/ig For the initial condition we take
i () = 0.9 if x < 0.9,
WRESTl 0 otherwise.

To discretize the domains €;, we use a regular mesh such that dx = size(M) = 1072
for all ¢ € {1,2} and we use a constant time step & = %.10*3. Figures 3.1 represent
functions u(.,t), w(.,u(.,t)), ¢(,u(.,t)) for ¢ = 0.007 and ¢t = 0.05. In the first case
oil is trapped under the interface I' located in x = 1 and the capillary pressure is
discontinuous whereas in the second case oil can flow through I" and the continuity of
the capillary pressure is ensured. Figure 3.2 represents the evolution of the flux and
of the saturations on the interface I' according to the time variable. We have also
done tests with the initial condition

wn(@) = { 09 i r>12,
AT 0 otherwise

where oil already lies in the capillary barrier. Figures 3.3, 3.4 show the results we
obtained. We notice that, although the capillary pressure is discontinuous, oil can flow
through T' from Q5 to ©; while satisfying the conditions (2.4) since, for all ¢ € [0, 0.05],

4. Concluding remarks. In this paper we have established a convergence prop-
erty for the scheme (2.2)—(2.4) towards a weak solution of the problem (1.5)—(1.9) in
the sense of Definition 1.3. It remains to prove the uniqueness of such a weak solu-
tion. Further works will be done with taking a total flux and the gravity gradient into
account (see [8]).
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Space Discontinuous Capillary Forces
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F1c. 3.2. Evolution of the flux and of the saturations on the interface.
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w(.,u(.,t), e(,u(.,t)) for t =0.007 (a) and t =0.05 (b).
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Fic. 3.4. Evolution of the flux and of the saturations

on the interface.



