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Eric Chénier, Robert Eymard, Xavier Nicolas
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Physical problems

Transport of mass and energy within porous media :

- Pollution of soils

- Degradation of concrete

- Migration of hydrocarbon components

- ...
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Examples of conservation equations in porous media

N c components, Np phases

(Acp)t + divF cp = Rcp

Acp = SpξpX
c
p

F cp = ξpX
c
pVp −Dc

p(Vp) · ∇Xc
p

Dc
p(v) · w = acpw + |v|

(
bcp
v·w
v·v v + ccp(w − v·w

v·v v)
)

Vp = −K krp(Sp)
µp

(∇Pp − ρpg)
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Mathematical questions

Existence and uniqueness of solutions

Numerical approximation

Convergence and error estimates

...
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Approximation using finite volume methods

Conservation equation

∂A

∂t
+ divF = R

with

• A : extensive quantity

• F : flux

• R : reaction term
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Partition of the domain
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Partition of the domain
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Dual mesh (Voronöı mesh)
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Extensive balance in control volumes

mK
A

(n+1)
K −A(n)

K

δt(n)
+
∑
L∈NK

F
(n,n+1)
K,L = mKR

(n)
K

F
(n,n+1)
K,L approx.

1
δt(n)

∫ t(n+1)

t(n)

∫
K|L

F · nK,Ldsdt

F
(n,n+1)
K,L = −F (n,n+1)

L,K ⇒ local conservation
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Flux approximation

Finite Difference Approximation of F = −a ∇u

FK,L = −a mKL
uL − uK
dKL

K
L

m
KL

K L

d
KLx x
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The COUPLEX 1 case

divV1 = 0 with V1 = −K(∇P1 − ρ1g)

(X1
1 )t − div

(
X1

1V1 −D(V1) · ∇X1
1

)
= −ΛX1

1
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Finite volume scheme on Voronöı mesh

HK = P1K − ρ1g · zK and VK,L = mKL
HK−HL
dKL

FV scheme:
∑
L∈NK

VK,L = 0

mKL

dKL
= −

∫
Ω

∇ϕK(x) · ∇ϕL(x)dx ⇒ FV = FE

approx. ∇H constant by triangle
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Finite volume scheme for concentrations

mK
X

(n+1)
K −X(n)

K

δt
+
∑
L∈NK

 X
(m)
K,LVK,L−

DKL(X(m)
L −X(m)

K )

 =

mK(R(n)
K − kX(n+1)

K )

with

DKL = −
∫

Ω

∇ϕK(x)D(∇H)∇ϕL(x)dx

m = n or m = n+ 1
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Upwinding scheme

if VK,L ≥ 0 then X
(m)
K,L = X

(m)
K

else X
(m)
K,L = X

(m)
L
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Variable Péclet number finite volume scheme

X
(m)
K,L = θK,LX

(m)
K + (1− θK,L)X(m)

L

⇒ F
(m)
K,L =

(
θK,LX

(m)
K + (1− θK,L)X(m)

L

)
VK,L−

DKL(X(m)
L −X(m)

K )

minimum of |θK,L − 1
2 | with θK,L ∈ [0, 1] and

θK,LVK,L +DKL ≥ 0, (1− θK,L)VK,L −DKL ≤ 0
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Contour levels of iodine at 10110 years

MUSCL exp. (left), up.imp. (middle), Péc.imp. (right)
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Contour levels of iodine at 50110 years

MUSCL exp. (left), up.imp. (middle), Péc.imp. (right)

Austin, March 2003



Cumulative total fluxes of iodine
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Concluding remarks

1. FV simple and accurate = industrial schemes.

2. A complete engineering approach ? Handling uncertainties on

(a) porosity, permeability, diffusivity fields, source terms,

(b) boundary conditions as function of time.
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