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Physical problems

Transport of mass and energy within porous media :
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- Pollution of soils
- Degradation of concrete

- Migration of hydrocarbon components
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Examples of conservation equations in porous media

N€ components, N,, phases

(AS), + divES = RS

Ap = 5p&p X,

FS =& XV, — Dy(Vp) - VX

DE(v) - w = aSw + |v] (b5 %% v 4 5 (w — 22v))

Vo = —KE22(VP, — pog)
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Mathematical questions

Existence and uniqueness of solutions

Numerical approximation

Convergence and error estimates
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Approximation using finite volume methods

Conservation equation

A
%—t—l—divF:R

with
e A : extensive quantity
o F': flux

e 7 : reaction term
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Partition of the domain
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Partition of the

domain
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Dual mesh (Voronoi mesh)




Extensive balance in control volumes
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Finite Difference Approximation of | F' = —a Vu
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Flux approximation
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The COUPLEX 1 case

divlV; = 0 with Vi = —K(V P, — p1g)
(X)) — div ( Xivi —D(W)-VX| ) = —AXj
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Finite volume scheme on Voronoi mesh

Hix = Pig — p19- 2k and Vi 1 = mkr HS;ZJL
FV scheme: Z Vkr =0

LeN

mgKgr,

dir

:_/ Vo (z) Veor(z)ds |=[FV =FE
Q

approx. V H constant by triangle
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Finite volume scheme for concentrations

X - X5 S Xy Vie,r—
& I\ % DKL(Xém) i X]E'{m))
mc (R — kX))

0
m=norm=n-+1
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Upwinding scheme

if Vi, >0 then X7 = X7

else ng{mg = x{"™




Variable Péclet number finite volume scheme

Xgp = Ok Xi” + (1= O 0) X"
= F) = (HK,LXEm) + (1 - 9K,L)Xém)) Vi, —
Dicr(Xp™ — X&)

minimum of |0 1, — =] with 0 1, € [0, 1] and

Ok LV +Dxr >0, (1 -0k 1)V —Drr <0
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Contour levels of iodine at 10110 years

e

=N =

MUSCL exp. (left), up.imp. (middle), Péc.imp. (right)
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Contour levels of iodine at 50110 years
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MUSCL exp. (left), up.imp. (middle), Péc.imp. (right)
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Cumulative total fluxes of iodine

3

source term
clay—>limestone
clay—>dogger
limestone—>out
dogger—>out

Cumulative iodine fluxes (moles)

Logl10(time (years))
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Concluding remarks

1. FV simple and accurate = industrial schemes.

2. A complete engineering approach ? Handling uncertainties on
(a) porosity, permeability, diffusivity fields, source terms,

(b) boundary conditions as function of time.
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