

A mathematical and numerical study of an industrial scheme for two-phase flows in porous media under gravity

Presented by G. Enchéry, Institut Français du Pétrole, France.

Article written in collaboration with

R. Eymard, Université de Marne-la-Vallée, France,

R. Masson, S. Wolf, Institut Français du Pétrole.

Published in Computational Methods in Applied Mathematics.

- 1. The phase-by-phase upstream weighting scheme
- 2. Mathematical properties
- 3. Numerical results
- 4. Concluding remarks

- 1. The phase-by-phase upstream weighting scheme
- 2. Mathematical properties
- 3. Numerical results
- 4. Concluding remarks

The continuous model

The coupled system

$$\begin{cases} \phi \frac{\partial s}{\partial t} + \operatorname{div} \left(\Upsilon(\phi) \ \eta_o(s) (\rho_o \overrightarrow{g} - \overrightarrow{\nabla} p) \right) = 0 \text{ on } \Omega \times (0, T) \\ -\phi \frac{\partial s}{\partial t} + \operatorname{div} \left(\Upsilon(\phi) \ \eta_w(s) (\rho_w \overrightarrow{g} - \overrightarrow{\nabla} p) \right) = 0 \text{ on } \Omega \times (0, T) \end{cases}$$

Boundary conditions

$$\forall \alpha \in \{o, w\}, \ \Upsilon(\phi) \left(\eta_{\alpha}(s)(\rho_{\alpha} \overrightarrow{g} - \overrightarrow{\nabla} p)\right). \overrightarrow{n} = 0 \text{ on } \partial\Omega \times (0, T)$$

Initial condition

$$s(x,0) = s_{ini}(x)$$

The upstream weighting scheme (explicit case)

For all $n \in \{0 \dots \overline{M}\}$ and $K \in \overline{\mathcal{T}}$ we have

$$\begin{cases} m(K)\phi_{K}\frac{s_{K}^{n+1}-s_{K}^{n}}{\delta t} + \sum_{L \in N(K)} \Upsilon_{K|L}(\eta_{o})_{K|L}^{n+1}(\rho_{o}g\delta z_{K,L} - \delta p_{K,L}^{n+1}) = 0, \\ -m(K)\phi_{K}\frac{s_{K}^{n+1}-s_{K}^{n}}{\delta t} + \sum_{L \in N(K)} \Upsilon_{K|L}(\eta_{w})_{K|L}^{n+1}(\rho_{w}g\delta z_{K,L} - \delta p_{K,L}^{n+1}) = 0, \end{cases}$$

where

$$(\eta_{\alpha})_{K|L}^{n+1} = \begin{cases} (\eta_{\alpha})_{K}^{n+1} = \eta_{\alpha}(S_{K}^{n}) & \text{if } \rho_{\alpha}g\delta z_{K,L} - \delta p_{K,L}^{n+1} \ge 0, \\ (\eta_{\alpha})_{L}^{n+1} = \eta_{\alpha}(S_{L}^{n}) & \text{otherwise.} \end{cases}$$

The decoupled form

Summing both equations we get

$$\forall n \in \{0 \dots M\}, \forall K \in \mathcal{T}, \sum_{L \in N(K)} Q_{K,L}^{n+1} = 0$$

with

$$Q_{K,L}^{n+1} = \Upsilon_{K|L} \left(\left((\eta_o)_{K|L}^{n+1} \rho_o g + (\eta_w)_{K|L}^{n+1} \rho_w g \right) \delta z_{K,L} - \left((\eta_o)_{K|L}^{n+1} + (\eta_w)_{K|L}^{n+1} \right) \delta p_{K,L}^{n+1} \right).$$

Expressing $\delta p_{K,L}^{n+1}$ in terms of $Q_{K,L}^{n+1}$, plugging this expression into the "oil equation", and setting $G_{K,L}=\Upsilon_{K|L}(\rho_o-\rho_w)g\delta\!z_{K,L}$ we obtain

$$m(K)\phi_K \frac{s_K^{n+1} - s_K^n}{\delta t} + \sum_{L \in N(K)} \frac{(\eta_o)_{K|L}^{n+1} \left(Q_{K,L}^{n+1} + (\eta_w)_{K|L}^{n+1} G_{K,L}\right)}{(\eta_o)_{K|L}^{n+1} + (\eta_w)_{K|L}^{n+1}} = 0.$$

The discrete oil flux

We set

$$F(s_K^n, s_L^n, Q_{K,L}^{n+1}, G_{K,L}) = \frac{(\eta_o)_{K|L}^{n+1} \left(Q_{K,L}^{n+1} + (\eta_w)_{K|L}^{n+1} G_{K,L}\right)}{(\eta_o)_{K|L}^{n+1} + (\eta_w)_{K|L}^{n+1}}.$$

Properties of F(.,.,Q,G):

- The upwind saturations can be determined only with the values of Q and G.
- The oil flux is monotonous : F(.,.,Q,G) is nondecreasing with respect to its first argument and nonincreasing with respect to its second argument.

- 1. The phase-by-phase upstream weighting scheme
- 2. Mathematical properties
- 3. Numerical results
- 4. Concluding remarks

L^{∞} stability of the saturation calculation

Using the monotonicity of the flux we can show that, for all $n \in \{0 \dots M\}$ and $K \in \mathcal{T}$, we have

$$0 \le s_K^n \le 1$$

in the implicit case as well as in the explicit case under the CFL condition

$$\delta t \le \inf_{K \in \mathcal{T}} \left(\frac{m(K)}{\sum_{L \in N(K)} C_{\eta}(|Q_{K,L}^{n+1}| + |G_{K,L}|)} \right).$$

L^2 pressure estimate

We first prove a discrete H^1 -seminorm on the pressure

$$|p_{\mathcal{M}}^{n+1}|_{1,\mathcal{M}} = \sum_{K|L \in \mathcal{E}_{int}} \tau_{K|L} (\delta p_{K,L}^{n+1})^2 \le C.$$

From the Poincaré-Wirtinger inequality we deduce that

$$||p_{\mathcal{M}}^{n+1}||_{L^2(\Omega)} = \sum_{K \in \mathcal{T}} m(K)(p_K^{n+1})^2 \le C.$$

Remark : The H^1 -seminorm on the pressure ensures that there exists a time step $\delta t>0$ satisfying the previous CFL condition.

Existence of solutions to the discrete systems

The explicit case The system is nonlinear in pressure because of the saturation upwinding. The L^2 pressure estimate and a topological degree argument ensure the existence of a couple of solutions $(s_K^{n+1}, p_K^{n+1})_{K \in \mathcal{T}}$ for all $n \in \{0 \dots M\}$.

The implicit case The same arguments used with the saturation and the pressure estimates give the result.

- 1. The phase-by-phase upstream weighting scheme
- 2. Mathematical properties
- 3. Numerical results
- 4. Concluding remarks

Numerical convergence: Error in saturation

Error in saturation (L1 norm)

Numerical convergence: Error in pressure

- 1. The phase-by-phase upstream weighting scheme
- 2. Mathematical properties
- 3. Numerical results
- 4. Concluding remarks

Convergence (1)

- Numerically the scheme is convergent.
- The mathematical proof is still a challenge. Two difficulties :
 - 1. From the saturation estimate we deduce that, up to a subsequence,

$$s_{\mathcal{M}} \to \overline{s},$$
 $kr_{\alpha,\mathcal{M}} \to \overline{kr}_{\alpha}$

in the weak-* sense. But, because of the nonlinearities,

$$\overline{kr}_{\alpha} \neq kr(\overline{s}).$$

Convergence (2)

2. From the discrete H^1 -seminorm, we deduce that, up to a subsequence and for all $t\in(0,T)$,

$$p_{\mathcal{M}}(.,t) \to \overline{p_t},$$
 $\overrightarrow{\nabla} p_{\mathcal{M}}(.,t) \to \overrightarrow{\nabla} \overline{p_t}$

weakly in $L^2(\Omega)$. Thus both mobilities and pressure gradients converge in weak senses but we can not conclude about their product.